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ABSTRACT

Here we seek to take a traditional Magneto Optic Kerr Effect (MOKE) experimental de-

sign, useful for local magnetization measurements, and apply it to measuring aligned mul-

tiferroic Janus nano fiber agglomerates. In order to achieve this we modify the traditional

MOKE geometry by measuring our Kerr rotation from collimated scattered light, rather

than the conventional specular reflection. Using various techniques to improve signal to

noise ratio (SNR), we extend the application of this scattered MOKE geometry to build

families of First Order Reversal Curves (FORC). Using an alternative analysis technique,

FORC curves are processed and become a FORC diagram, which is shown to look very

similar to FORC diagrams created with literature suggested methods. From the FORC

diagram we gain insights into how the coercivities are distributed within the aligned ag-

glomerates and how their magnetization evolves as a function of applied field.
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Figure 7.12 The shape of a typical X axis for a single full FORC with only 3
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CHAPTER 1

INTRODUCTION

As a community of researchers, we have come so far from first principles when it comes to

scientific exploration. The sheer vastness of the universe means that there is a neigh inex-

haustible well of phenomena to discover, measure, parametrize, characterize, modify, and

maximize. There is a certain joy that comes with the discovery that your research is unique

and has value. Although topics for research are seemingly splintering and branching, re-

quiring more specific measurement techniques and creative thinking, the truth remains that

these phenomena exist to be discovered, and we are the ones who have been given the

opportunity to do so. We all stand on the shoulders of giants, and to think otherwise is

a doing a disservice to everyone that has come before us. This research is no exception.

We combine various broad fields of science: nanoscience, experimental optics, nanomag-

netism, data science, and automation to achieve our ultimate goal. Each of these topics

in turn can be traced back farther and farther to first principles, but we need not retrace

our steps with every advancement. Instead, we acknowledge the tremendous work that has

been done before and graciously apply that knowledge to discover the next new physical

phenomenon.

This research was born out of a collaboration between my advisor, Dr. Thomas "Mas"

Crawford, and Dr. Jennifer Andrew, from the university of Florida. By using a novel

nanofabrication technique, the Andrew group was able to create a new composite meta

material: biphasic multiferroic Janus nanofibers. While numerous composite multiferroic

materials have been created in the material science field, novel materials with cylindrical

geometries are avoided due to the difficulty in characterization and application.

1



www.manaraa.com

Typical routes to characterizing polydisperse nanomaterials involve bulk magneto-electric

measurements, although this type of measurement will likely mask any individual direc-

tionally dependent effects. An attractive method of measuring these materials without

using a bulk measurement seemed to be the optical measurement known as the Magneto

Optic Kerr Effect (MOKE), which uses polarized light to magnetically characterize ma-

terials on the same order of the optical spot size. Although we were unable to fully iso-

late and mechanically separate these fibers, we used directed magnetic self-assembly to

encourage these fibers to align in parallel agglomerates of few micron diameter. We ex-

pect that individual fiber agglomerates would show very different magnetization properties

when compared to the bulk due to the distribution of fiber coercivities and strong shape

anisotropy. Although MOKE offers the route to microscopic magnetic surface measure-

ments, topographically diverse surfaces serve to drastically reduce the effectiveness of this

measurement technique. Rather than abandon the technique, the problem was identified

that we were simply searching for a hypothetical "needle” of a signal in a "haystack” of

background noise. By cleverly removing the so called "haystack”, we are able to more

easily find the "needle”. From a successful and robust MOKE measurement technique, we

expand the scope of our measurement to take First Order Reversal Curves (FORC) mea-

surements. This technique offers information about the specific distribution of a magnetic

system made of discrete magnetic components. We show that with the help of various

data analysis procedures and careful data acquisition, FORC measurements on aligned

nanofiber agglomerates are indeed possible and can offer insight to micromagnetic pro-

cesses within a system of interacting magnetic entities.

In this document we will begin with relevant background information regarding ex-

perimental and theoretical optics, magnetism, multiferroic materials, MOKE, and FORC

measurements. Once an adequate amount of background information is covered, we will

show how a basic MOKE experiment is carefully and iteratively changed into a robust ex-

periment capable of measuring FORC curves on topologically diverse nanofiber agglom-
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erates. Following that, we will reveal the necessary steps required to create a so-called

FORC diagram, which is the final step before micromagnetic analysis can begin. We will

then attempt to characterize our materials with comparative FORC analysis.
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CHAPTER 2

MUTIFERROIC MATERIALS

2.1 A BRIEF INTRODUCTION OF MULTIFERROIC MATERIALS

Many measurements of new functional materials consider the conductivity or resistivity, or,

in general, the potential for storing and carrying an electrical charge in a material. When

considering magnetic materials, we are often concerned with how well we can store a mag-

netic field in a material, how much field does it take to reverse this stored field, and how the

magnetization of a material evolves with time or under the influence of various applied field

gradients. Interpreting the various results of these measurements can help lead to a better

understanding of the physical properties of the magnetic material and its dependence on

external parameters. Multiferroic materials combine magnetic and dielectric properties by

creating a coupling between electric and magnetic properties. A multiferroic material can

be electrically polarized with an external magnetic field, and, likewise, magnetized with an

external electric field. These materials can be intrinsic multiferroic materials, possessing

this coupling between magnetization and polarization innately, or they can be composite

multiferroics [1]. In the case of a composite multiferroic material, each contributing mate-

rial will also have a ferroelastic property in addition to their magnetic or electric ferroicity,

and thus the coupling of magnetism to dielectricity is most often mediated by a strain inter-

action between both materials. If a magnetostrictive material is connected to a piezoelectric

material, an external field which is either magnetic, or electric, will induce a strain in the

connected material, which will result in a strain-generated field in the dielectric or mag-

netic material, respectively. Equation 2.1 shows how a magnetoelectric effect (ME) can be
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thought of as a product of strain (S) dependent polarization (P) coupled to magnetization

(M) dependent strain,

ME ∝
dP
dS
× dS

dM
. (2.1)

Composite multiferroic materials can be connected in many ways and are often referred

to by the dimensionality of each contributing material. For example, if magnetic particles

were suspended in a block of a dielectric material, we would refer to it as a 0-3 geometry,

with the ’0’ referring to the dimensionality of the nanoparticle, and the ’3’ referring to the

bulk material in which the particles are suspended. A few examples can be seen in Figure

2.1, and a full list can be found in reference [2].

Figure 2.1 A representation of different multiferroic connectivities. a) 0-0 b) 0-1 c) 2-2
and d) 1-1.
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While the coupling between magnetization and polarization is a critical parameter for

assessing a multiferroic material, the research that follows seeks only to characterize the

specific magnetic properties of the multiferroic material described in the next section.

2.2 SAMPLE FABRICATION

The ultimate goal of this project is to determine a relatively easy way to magnetically

characterize multiferroic Janus nanofibers, eventually leading to the characterization of

the ME coupling between composite elements. Before describing the extensive steps to

the aforementioned characterization, we begin by describing the multiferroic material and

the fabrication technique used. This project is done in collaboration with the Andrew

group at the University of Florida. The Andrew group focuses on fabrication of novel

materials, and we, in turn, seek to functionalize and characterize novel materials. The

material in this case is a collection of randomly oriented multiferroic nanofibers in the 1-

1 geometry. The nanofibers used have been created with the nanofabrication method of

electrospinning. Electrospinning has been extensively used to create single nanofibers [3]

and have been used as a means to facilitate both regular nanoparticle growth [4], as well as

Janus nanoparticle growth [5]. The term ’Janus’ refers to the distinct phase separation at a

specific interface of a composite material. Several examples can be seen in Figure 2.2.
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Figure 2.2 Janus nanomaterials come in a variety of geometries. The most common, and
which has the most synthesis techniques, is the Janus particle. Janus rods, or fibers, can be
attached at their long axis, end-to-end, or as a core-shell material.

The Andrew group has extended this fabrication technique to create Janus-style com-

posite multiferroic nanofibers. Previous attempts at biphasic nanofiber electrospinning has

resulted in core-shell [6] and randomly biphasic [7] nanofibers. At the time of publication,

little to no work had been done to create a hemicylindrically biphasic Janus-style nanofiber

of which both materials are ceramics with different crystal structures. The desire to cre-

ate this type of material was motivated by a publication which suggested a situationally

stronger ME coupling for a 1-1 connected multiferroic material [8] . Although the BTO-

CFO Janus was revisited in 2015 by creating a core-shell fiber, the main disadvantage of

the core-shell style was the restriction of motion of the core with respect to the radial direc-

tion, as it is fully enclosed by the shell [9]. This restriction would often lead to a cracking

of the outer shell [10]. The basics of the electrospinning process is shown in Figure 2.3 but

is fully described in [9].
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Figure 2.3 The Janus nanofiber electrospinning technique as described in ref. [62].
Precursor gel solutions of cobalt ferrite and barium titanate are loaded into a dual channel
syringe. Mechanical depression of the syringe with the addition of a high voltage at the tip
forms a biphasic Taylor cone. A grounding plate located 25 cm away from the syringe
assists in the extrusion of the nanofiber geometry due to the large voltage difference
between syringe tip and grounding plate. The result of the electrospinning process is a
mat of randomly aligned and hemicylindrically biphasic Janus nanofibers.

Electrospun Janus fibers are created as a mat of non-preferentially aligned fibers. We

seek to functionalize these fibers, and measure their magnetic properties. In order to pro-

ceed, the fibers from the spun-mat are crushed and delivered to us in powder form. As men-

tioned earlier, we are not interested in the bulk properties of these materials, as these types

of measurements are indifferent to the unique geometry of the Janus material. Instead, we

align the fibers into chains within an external magnetic field. There have been numerous

published experiments regarding the chaining of magnetic nanoparticles within an exter-

nal field. We extend these experiments to our rod-shaped sub-micron diameter nanofibers

and have found chaining parameters that differ from the expected nanoparticle chaining

parameters [11]. Initially fibers were simply suspended in DI water or Methanol, in or-

der to provide a medium in which the fibers could move freely within during the chaining

process. It was later discovered that the alignment of these fibers was partially dependent

on the viscosity of the medium in which chaining was occurring. This is likely due to the

rod-like geometry of the fibers, and their subsequent rotation to align within the external
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field. One of the biggest issues encountered early in alignment experimentation was the ag-

gregation of many fibers into very large agglomerates with diameters between 20-100 µm

in diameter (Figure 2.4), compared to the ∼ 1µm diameter of a single nanofiber. In this

case, the result was more of a large thin film with a very topographically uneven surface,

rather than an agglomerate of a few aligned fibers.

Figure 2.4 Initial alignment tests on pure CFO fibers dissolved in methanol. Fibers
would be separated with tip sonication, and mixed into methanol. the methanol-fiber
solution was evenly distributed on a glass substrate using a spin coater. The sample was
then placed within an external magnetic field until the methanol was fully evaporated. The
result is pictured above: aggregates that hardly show that they are actually composed of
nanofibers. The circled red spot represents a hole burned into the fiber-island during an
early MOKE measurement.

This problem was addressed by suspending the fibers within a viscous, air curable PVA

solution and coating the fibers in a citric acid. The viscosity of the PVA would reduce the

range in which fibers would aggregate, while the introduction of citric acid would act to
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assist in stabilization of fibers within solution; preventing them from aggregating in the

absence of an external alignment field. The result of these efforts were agglomerates of

fibers which were few µm in diameter and tens of µm in length as shown in Figure 2.5.

a) b)

c)

Figure 2.5 a) A portion of the full substrate surface containing aligned and chained
fibers which have been suspended in PVA solution. A typical sample covers a 7x7mm2

area. b) 100x dark-field optical images of fiber aggregates measured with our ScMOKE
technique. The suspension-in-polymer and field-chaining process makes it difficult to
focus the image at all heights. Note the large variation in individual fiber-alignment even
as the aggregate is clearly linear. c) SEM image of field-aligned, non-Janus, CFO fibers,
also created via electrospinning, suspended in methanol and dropped onto glass and
coated with Au for imaging. The alignment process is of course different between the b)
and c) because of the viscosity difference between PVA and methanol [11].

We conducted all measurements on fiber agglomerates resembling the images in Figure

2.5b. When picking fibers for magnetic investigations, we specifically look for fibers with

diameters which are less than ∼ 5µm.
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CHAPTER 3

EXPERIMENTAL AND THEORETICAL OPTICS

3.1 AN IMPORTANT NOTE ON EXPERIMENTAL OPTICS

Laser optics are truly incredible instruments. The ability to direct light precisely with

curved pieces of glass is truly amazing. The supporting theory of ABCD matrixes for

predicting beam paths through non-ideal ’thin lenses’, and even the effectiveness of the thin

lens Equation to predict the path of collimated light through lenses which should clearly

not be called ’thin’ [12]. In this chapter, we will be talking all about experimental optics:

useful experimental techniques, geometric considerations, where to accept ’good enough’

as opposed to ’perfect’, and how to make the best use of what is available.

3.2 RAY TRACING AND THE THIN LENS EQUATION

Just because we work with non-ideal "thick lenses" in a laboratory setting, does not mean

that the basics cannot be applied in some capacity. The use of the thin lens Equation, shown

below, and the ensuing ray tracing allows for a great deal of sketching when it comes to

optical experimentation.

11



www.manaraa.com

Figure 3.1 A basic ray tracing diagram following the thin lens Equation.

For the above thin lens Equation, f is the focal length, s is the distance from the lens

to the object, and s′ is the distance from the lens to the image created using the lens. This

Equation is invaluable for quickly blocking out the geometry of an experiment since it

can often get the experimenter within a few percent of the perfect location of an optical

element. In most cases, we use a collimated laser source, which means this Equation is

even easier to apply. By treating the laser as an object located at infinity (s = ∞), the focal

length will simply equal the location of the final focused spot.

3.3 GAUSSIAN OPTICS

Equation In optical experiments, one of the most important parameters that is considered is

the spot size of a laser beam. Because the power distribution of a focused laser is Gaussian,

the full width half max (FWHM) or the beam waist (w0) will represent the effective spot

size. For optical experiments involving nanomaterials, the goal is usually to focus the spot

as small as physically possible. Using the thin lens Equation as a guide, we are led to

believe, "if I just focus my plane wave at the focal length it will be infinitesimally small".

Unfortunately, this will lead to frustration as you will see in the following discussion.

Starting from the thin lens Equation, if we assume that the a collimated laser can be

treated as an object located at infinity, we are left with the following Equation, regarding

the final size of the focussed laser spot size.
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h′ =− f
s

h (3.1)

The result of our geometric treatment of a beam is that the smallest final height will be

achieved by having an object at a large distance s, using a lens with a small focal length

f and having a beam a small starting height h, or beam radius in this case. Unfortunately

for the modern laser experimenter, this is not true, and will lead to a spot size that is not

quite as small as predicted by Equation 3.1. One must be fully aware that the treatment of

a laser as an object located at infinity is incorrect when determining image size! A laser

is actually a slowly diverging plane wave with a Gaussian distribution of intensity at the

wave front. This slight difference makes a very large change in determining the final spot

size. In fact, contrary to Equation 3.1, we do not, in fact, want a small initial radius of

our spot. We instead desire a larger initial beam size, which will lead to a smaller final

spot size. For a Gaussian beam, we see that the dependence on initial beam diameter, D, is

inversely proportional to the final beam waist w0, rather than directly proportional, as seen

in Equation 3.1. For a full derivation of the Gaussian beam waist see reference [13]. The

waist of a Gaussian beam is given by

w0 =
4λ f

D
, (3.2)

where λ is the wavelength of the beam, and f is the ordinary focal length of the ‘thin

lens’. As I said earlier, approximating a lens as thin is often good enough as an approx-

imation. There are, however, obvious physical limits to some of these parameters. A

wavelength is typically selected specifically for a particular experiment, the focal length

can often be limited by the geometric considerations of the experiment, and the beam di-

ameter can only expand so large before it can no longer fit through a given lens. In fact,

in addition to potentially not fitting through a lens, a large beam can fall victim to an op-

tical defect called spherical aberration. This can be shown using the ABCD matrices for a

circular lens.
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Figure 3.2 The above image is a simulation of parallel rays passing through a single
spherical glass surface using the ABCD transfer matrices. The index of refraction is
assumed to be 1.5, and the radius of curvature is 12.7 mm. The Y axis indicates vertical
position on the lens in mm. The X axis is horizontal position in mm. We assume that the
input to the left of the lens is a parallel set of rays. Note that the parallel rays (simulating a
beam which completely fills the lens) diverge from their focal location (right circled
region in the inset) as they strike initial positions farther from the center of the lens.
Rather than achieving a point-like focus, spherical aberration will yield a focal spot much
larger (left circled area in the inset).

Ideally, we seek to use Equation 3.2 to achieve the minimum spot size. It would seem

as if this is simple, and one need only to use a beam expander to fill the focusing lens

while finding a lens with the smallest focal length. Unfortunately, Figure 3.2 shows one

of the most common aberrations which prevent easily achieving a tight focus. Fortunately,

there are numerous types of lenses beyond the spherical lens which help to mitigate the

effect of certain aberrations. Examples are doublet lenses, aspherical lenses, molded glass

lenses, or microscope objectives. Specifically, a microscope lens is designed to magnify an

image several hundred times with high resolution. Inside the objective there is a carefully

designed lens stack to carefully focus light from all parts of the lenses within to a singu-

lar point of observation. These are just some of the solutions to the problem of excising
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aberrations. However, when addressing these problems, the best solutions can often be

financially unachievable, so we often must work with what is available. In our case, we

decided to go for the most cost-effective route, which is the use of an Achromatic Doublet.

The Achromatic Doublet is a pair of lenses (biconvex and plano-concave) which have been

’cemented’ together. In addition to being a lens pair, each of the 2 lenses are have a slightly

different index of refraction. Ordinarily, white light passing through a medium will split

into its many separate monochromatic wavelengths each moving in a slightly different di-

rection, following Snell’s Law (chromatic aberration). Although this still happens when

using a doublet lens, the negative effect is reduced by having each of the two lenses at a

different index of refraction in addition to having an optical surface within the lens stack

acting to slightly modulate the focusing mechanism through a slight dispersion of incident

light. White light passing through will be refracted more or less depending on the wave-

length, and will focus in a tighter range when compared to a traditional singlet. Fortunately,

we are using a nominally monochromatic light source at ∼793 nm and the chromatic aber-

ration will not have a large effect on our experiment. The doublet lens also helps to manage

the spherical aberration from Figure 3.2. The combination of lenses assists in correcting the

off-axis (rays which strike points far from the center of the lens) behavior. By selecting the

correct lens for our experiment, we are able to easily reduce the size of our beam without

having a too-complex optical focusing scheme. Picking the correct focusing mechanism is

not a purely theoretical endeavor, however, as will be shown in the next section.

3.4 KNIFE EDGE MEASUREMENTS

Rather than relying solely on Equation 3.2, we can use it as a guideline and design a small

experiment to determine the beam waist of our Gaussian beam. The particular experiment

is referred to as a knife edge measurement [14]. A knife edge measurement is used to show

the power distribution of an optical spot size in one or two dimensions. The experimental

setup can be seen in Figure 3.3.
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Figure 3.3 A very basic Knife Edge measurement. The ring on the left represents a
convex lens. D is the distance from the lens to the location of the ‘knife edge’ where the
measurement is taking place. The black bar on the far right is an optical detector capable
of capturing the full diameter of the beam. The knife edge is incrementally moved so that
the final measurement is fully unobscured by the knife.

The most important parts of an accurate knife edge measurement are a sharp edged

object to fully or partially block a beam with minimal scatter, a laser source, the lens being

tested, and an accurate way to translate the knife edge. Starting with a fully blocked beam,

record the amount of signal being transmitted past the knife edge. The experiment is now

as simple as translating the knife edge incrementally and recording the transmitted power

at each increment. The resulting signal should resemble the graph in Figure 3.4 which is

actually an error function.
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Figure 3.4 Visual representation of the how to extract the beam waist parameter from the
knife edge measurement. The dots in the left graph represent the raw data and the line
through it shows an error function fit. The specific fit parameters are listed in the lower
box within the graph. The graph on the right is a differentiation of the fit function. The
derivative of the error function yields a Gaussian, and in our case, the Gaussian profile of
the intensity of our beam. On the Gaussian graph there are two widths marked. The lower
of the two is the 1

e2 value, or the beam waist (w0). Above that is the typically referenced
full width at half max (FWHM) which can be found simply by multiplying the beam waist
by ∼1.177.

By fitting this error function, we can extract a parameter from the fit which is actually

the Gaussian beam waist! The Gaussian beam waist is a multiplicative constant away from

the typically referenced FWHM of a beam (Figure 3.4). Repeating the measurement and

changing the position of the focussing lens will yield a beam profile for each lens being

tested (Figure 3.5). The process is slightly tedious, but with automation and a bit of coding,

many of the intermediate steps can be processed with software (see Appendix A.1.1), and

the result is an excellent representation of the realistic minimum waist size for different

optical elements.
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Figure 3.5 The result of a 4 different knife edge measurements. Each of these
measurements was conducted with a different set of optics. The circle on the legend is
simply mapping a 75mm focal length Achromatic double (AC508-075-B). The square is
using the same doublet, but was placed in line with a 10x beam expander. The initial beam
diameter was ∼2mm and the 10x expansion almost fully filled the 50.4 diameter lens. The
diamond is a 3x beam expander in conjunction with the same doublet. The doublet was
selected for all of these since it was the highest quality single lens that was available in the
lab. Finally, the triangle is a molded aspheric lens ( C280TMD-B), crafted to counteract
the spherical aberration. While the geltech and 3x beam expander were able to reach
approximately the same minimum beam waist of ∼ 7µm, the depth of focus was
extremely small.

The Knife-edge measurement data suggest that the minimum focus achievable with the

available optics was approximately 7 µm with the geltech lens. Why did we settle on a

single unmodified Achromatic Doublet then? Notice that the depth of focus for the 7 µm

spot size to remain less than the unmodified doublet is only about 200 µm. In many exper-

iments, this would be a perfectly acceptable parameter. As you will see in section 7.4.1,

there are several experimental considerations that deterred us from the use of the low depth-

of-focus lenses. Some of these considerations include a 45◦ incident angle to our substrate,

a target surface that is an indeterminate depth within a transparent PVA solution, and the
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low focal length causing an equally short beam divergence. Furthermore, we were able to

modify our experimental data collection techniques such that an infinitesimally small beam

size was no longer necessary to carry out the experiment. Instead, our beam just needed to

be ’small enough’, and the ∼ 15µm spot size of the isolated doublet checked that box.

3.5 PLANE WAVE FORMALISM

In the previous section, we saw that treating a collimated source as an object located at a far

distance will lead to trouble when it comes to applying optical expressions. We introduced

the result of the beam waist of a Gaussian beam without discussing the reasoning why this

applies. Here we will introduce the formal definition of a plane wave, the definition of

polarization, and outline some of the ways a plane wave interacts with matter at different

scales. As is the case in much of Electrodynamics, we begin with Maxwell’s Equations,

∇ ·~E = 0, (3.3)

∇ ·~B = 0, (3.4)

∇×~E =
∂~B
∂ t

, (3.5)

∇×~B = µ0ε0
∂~E
∂ t

. (3.6)

In empty space, free of charge and currents, the E and B components of Maxwells Equa-

tions decouple from each other and the result is a 2nd order differential Equation of E(t)

and B(t) that each satisfies the wave equation,

∇
2F =

1
v2

∂ 2F
∂ t2 , (3.7)

with v = c, where c is the speed of light. This implies that an electromagnetic wave will

propagate in free space with a speed of c. By solving the wave equation, we find that the

solutions that satisfy it are of the form,

F(z, t) = F(αz− vt), (3.8)
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where α has the units of 1/length and v is velocity. We choose to satisfy the wave equa-

tion with a sinusoidal function. We call these waves monochromatic as the frequency, ω ,

determines the wavelength and, consequently, the energy of the wave,

F(z, t) = Aei(ωt−kz), (3.9)

which is the form of a plane wave travelling in the z direction in space, while oscillating at

frequency ω in time. We call the direction of the oscillations, which are orthogonal to the

propagation direction, the polarization of the plane wave,

From here, we can use Maxwell’s Equations once again to investigate the mutual di-

rectionality of the E and B waves respectively. We find that Ê and B̂ are perpendicular to

the direction of propagation (k̂), and likewise are perpendicular to each other. If we have

an electric field derived from a plane wave

~E = ÊE0ei(~k·~r−ωt), (3.10)

Maxwell’s Equations will show us that this electric field will require that the magnetic field

take a form

~B =
1
c

k̂×~E (3.11)

and both of these will be perpendicular to the direction of propagation k̂. For a more explicit

derivation of the plane wave formalism, see references [12, 15, 16]

3.6 SCATTERING AND OPTICAL EXPERIMENTATION

As I mentioned in the previous section, collimated light, or a laser, will take the mathemat-

ical form of a plane wave propagating in the direction k̂ with polarization Ê,

~E = ÊEoe−i(ωt−kr). (3.12)

We call the direction of propagation r, and the frequency of this monochromatic wave ω .

In order to predict the outcome of an optical experiment, we must understand how light, in
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the form of a plane wave, interacts with various surfaces. In most instances, surfaces can

be broken down by shape and size. For example, we often will consider light interacting

with flat planes at various incident angles, spheres of different radii, or cylindrical surfaces

of varying radii. With these few shapes and the various sizes therein, one can approximate

the majority of optical interactions. We will start with the most simplistic interaction, with

the least amount of dependent parameters. We begin with a monochromatic plane wave

striking a planar surface at θ degrees from the z axis.

Figure 3.6 A demonstration of the laws of reflection and refraction for a polarized plane
wave incident on a surface.

We assume that there will be a portion of the wave which is transmitted through this

planar surface and a portion that is reflected back. With this assumption we can generate

two more sets of E and B waves, namely, those reflected: ER,BR, and those which are

transmitted through: ET , and BT . The values of these six plane wave can be determined by

using the electromagnetic boundary conditions dictating continuity. The specific notation
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is symbolically irrelevant for our discussion, and for a full derivation see reference [15].

One of the most interesting and useful conclusions is the so called the "law of reflection",

which states that the angle of reflection θR will be equal to θi. Next we see "Snells Law",

or the "law of refraction", wherein the light which is transmitted will change the angular

pathway through a medium with a different index of refraction.

niSin(θi) = ntSin(θt) (3.13)

When considering the laws of reflection and refraction, we will often refer to the magnitude

of reflections in orthogonal polarization directions as the Fresnel reflection coefficients,

which will dictate the percent of light, initially in one polarization state, that will reflect

into either the same or orthogonal polarization state. The propagation of light through a

medium relies heavily on the index of refraction of the material, which is often treated as

a constant. For a homogenous material, this leads to a relatively uncomplicated represen-

tation for each of the Fresnel coefficients which depend only on incident angle and the

indicies of refraction of each material. We will see later, in Section 5, how the reflection

matrix can be changed by simply changing the dielectric properties of the material.

The laws of reflection and refraction can generally be applied as long as your surface

is much larger than the wavelength of light which is involved. By considering a circular

surface as an infinite amount of flat surfaces, we can easily apply the law of reflection

to an object which is much larger than the incident wavelength. This type of ballistic

scattering, where light follows the law of reflection, is shown in Figure 3.7. This relatively

simple simulation was made in Igor Pro to visualize our experimental optical geometry

(see section A.1.2 in appendix).
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Figure 3.7 This simulation was an exercise to help visualize light reflecting from a
circular surface. The light is incident at 45 degrees, originating from the top right of the
frame. The diameter of the circle is 1000 nm. The model includes a location of a
"gathering lens" where scattered light would be collected, indicated by the blue rays. The
annotation within the frame indicates the specific range in which light would scatter,
following the law of reflection, into the hypothetical lens.

This is an excellent approach when your object is much larger than the wavelength of

light, as is the case for a macroscopic plane. When we begin the shrink the object, we

encounter two other distinct formalisms which treat scattered light very differently. At the

smallest limit, the wavelength of light λ � R, where R is a length representative of the size

of the object. In most cases we consider ellipsoid-like shapes so R can refer to the smallest

radial distance. For this case we must use the Rayleigh Formalism. By increasing the size

of the object to where λ ∼ R we enter a new scattering regime: Mie scattering. Both of

these require a more mathematical approach when compared to ballistic scattering, but the

Mie scattering formalism is what will eventually dictate the experimental geometry of our

optical experiment.
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3.6.1 RAYLEIGH SCATTERING

We will briefly mention Rayleigh scattering first for completeness. A full mathematical

derivation is available in refernce [16], and a particle-geometry-specific approach is avail-

able in reference [17]. Our research involves 1-5 µm diameter nominally circular wires.

Instead of these wires being close to the wavelength of incident light, if we were to, instead,

treat these as a very small, long, needles (R� λ ), we can get a very smooth distribution

of scattered light depending on the incident polarization. We assume that we have a wire

which is infinitely long (in order to avoid complications from end effects) lying along the

x̂ axis. Our incident plane wave is polarized arbitrarily with ~E = E0‖ŷ+E0⊥x̂ , traveling

along the ẑ direction. We establish a scattering plane in the y− z plane, since we treat the

length of the wire as infinite and the angle of incidence is normal with respect to the needle.

Following the treatment of scattering from [17], we arrive at an expression for the electric

field components of light scattered in directions parallel (‖) and perpendicular (⊥) to the

scattering plane,

~Escat = E‖(Cos(θ)ŷ−Sin(θ)ẑ)+E⊥x̂, (3.14)

where E‖ and E⊥ are electric fields parallel and perendicular to the scattering plane. The

values for the two electric fields are dependent on the induced field (E0), polarizability of

the material (αi), and the induced polarization (~p),

E‖ =[py(αy)Cos(θ)− pz(αz)Sin(θ)k2]
e−ikr

r
(3.15)

E⊥ =px(αx)
e−ikr

r
. (3.16)

From these we can calculate the intensity of each of these components at various scat-

tering angles 0− π , where θ starts at +ẑ as 0 rads. By taking the magnitude of E‖ and

E⊥ the result is similar to the radiating dipole, except this will have a slightly different

trigonometric form as the object is not uniformly polarizable and therefore has directional

dependance. Thus, the dipole moment term pi, where the subscript i can be any of the or-
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thogonal cartesian directions, will indicate the relative magnitude of polarization projected

into the direction indicated by its subscript.

I|| =
1
r2 [p

2
yCos2(θ)+ p2

z Sin2(θ)k4 +2Sin(θ)Cos(θ)py pzk2] (3.17)

I⊥ =
p2

x
r2 . (3.18)

The important part of this result, to me, is the relatively elementary trigonometric result

of the scattered intensities. Figure 3.9 shows the scattering intensities graphically compared

to the same geometry for Mie scattering.

3.6.2 MIE SCATTERING

We begin the mathematical discussion of Mie scattering, as it applies directly to our exper-

imental geometry. In this case, the wavelength of light is of the same order of magnitude

with respect to the size of the object in which we are studying. There are many geometries

available for this type of scattering, but only a select few have been fully solved. In the case

of this research, one of the solved geometries, is an infinitely long (L� R) right cylinder.

For the case of this discussion, we use references [17, 18, 19], which have solved for the

scattering amplitudes of polarized incident light at arbitrary incident angles. The mathe-

matics to reach the solution are non-trivial, so I will simply facilitate the discussion with

relevant expressions. Unlike the limiting case of scattering, following the law of reflection,

where light reflecting from an object can be mapped back to a specific surface of reflection

(Figure 3.7), or Rayleigh scattering which produces a uniform and constant radiative "re-

flection" at all solid angles in a plane, Mie scattering seemingly combines both effects to a

compromising degree. In the Mie regime, we will indeed will have light scattering in 2π

directions in the scattering plane following both the short and long wavelength schemes.

However, due to the fact that we are unable to easily reduce and simplify the treatment of

Maxwell’s equations via Taylor expansion or other means, we will end with a very explicit

set of intensities that are highly directionally dependent in both incident angle, scattering
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direction, and observation angle. Although the plane of scattering will now follow the law

of reflection, the treatment of waves at the interface of materials becomes highly nontrivial.

To begin the Mie-scattering-from-infinite-wires problem, we start with a basic descrip-

tion of the geometry which can be seen in Figure 3.8, which has been adapted from the

discussion in reference [19]. In the Mie scattering case, we consider two types of incident

polarization: TM, and TE wherein the polarization is either parallel to the long axis of the

cylinder (case 1) or perpendicular to the cylinder’s long axis (case 2).

Figure 3.8 Shown here are the geometric specifics as outlined in [19]. The cylinder lies
in the ẑ direction. The incident wave propagates in the x− z plane, with a variable incident
angle α , which rotates about the y axis. E and H are indicative of the orthogonal fields of
the plane wave. Case 1 represents incident polarization which is parallel to the long axis
of the cylinder (along ẑ if α is 0), while case 2 indicates polarization which is along the ŷ
direction, and is perpendicular to the long axis at all α . The cone of scattering is indicated
in the image with forward scattering occurring at φ = 0 and backscattering occurring at
φ = π . Normal incidence occurs at α = 0 which reduces the cone of scattering to a flat
plane.
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We begin with Maxwell’s Equations and create, via separation of variables, a vector

and scalar wave equation,

∇
2~A+ k2m2~A = 0 (3.19)

∇
2
Ψ+ k2m2

Ψ = 0, (3.20)

where ~A and ψ are vector and scalar functions respectively, k is the wave number and m is

the complex refractive index.

From Maxwell’s Equations, the mathematical steps are highly non trivial, and for a full

explanation, it is suggested to read a combination of references [16, 17, 18, 19]. Following

the proper mathematical treatment for a plane wave polarized perpendicular to the long

axis of our infinite cylinder, we have scattering intensities with the form

I22 =
2i22I0

πk(rCosα + zSinα)
(3.21)

I21 =
2i21I0

πk(rCosα + zSinα)
, (3.22)

with i22 and i21, being the intensity coefficients,

i22 =|b01 +2∗Σ
∞
n=1bn1Cos(nφ)|2 (3.23)

i21 =|2∗Σ
∞
n=1an1Sin(nφ)|2. (3.24)

Again, we end up with a non-illuminating solution, since the intensity coefficients bn1

and an1 are infinite sums of various Bessel functions and their derivatives. Rather than

focusing solely on the resulting mathematical expression, it is helpful to view this data

graphically (Figure 3.9). For a given incident angle α we can produce I(φ) and look at how

the resulting distribution of intensities compare to the small wire (Rayleigh) formalism. In

this graph we have not completed the infinite sum as required by the intensity coefficients

above. Instead we have taken the first 100 terms for computational reasonability.
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Figure 3.9 The Mie scattering amplitudes for the MOKE orientation considered in the
experimental section. The data considers Mie scattering from a 5µm cylinder at normal
incidence with a polarization aligned perpendicular to the long axis. The magnitude of
scattered light changes sharply as observation angle moves through 180 degrees.
Considering our experimental geometry, we are viewing the 120-140 degree range of
angles

Looking at Figure 3.9 we can see that a significant amplitude of light polarized parallel

to the incident light can be found any solid angle of reflection. These data are not to be

taken as absolute numerical values. Following the geometry of Figure 3.8, we can see that

each of these are a single input of results of i22 or i21 from Equation 3.22, and if we want the

real intensity, there is a denominator that cares about where along the z axis (the length of

the wire) the observation is occurring. In a realistic experimental setting we are using a lens

to capture optical information which has a non-negligible area, and therefore a distribution

of intensities will be collimated into a single optical signal. Additionally, from Figure 2.5b,

we see that we do not have normal incidence, and instead the sub-micron structure of the

aligned fiber agglomerate will deviate from a right cylinder at normal incidence. The Mie

scattering intensities show us how dissimilar this regime of scattering is from the Rayleigh

and ballistic scattering. We will be using the knowledge of these scattering intensities to

modify a traditional MOKE geometry in the experimental chapters.
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CHAPTER 4

MAGNETISM AND MAGNETIC MATERIALS

4.1 INTRODUCTION

Magnetism is too large of a topic to be covered in a document such as this. Instead of

attempting to address magnetism from first principles, this section should serve to remind

the reader of relevant magnetic terminology as well as introduce the reader to experiment-

specific formalisms. For a full introduction to magnetism, see [20, 16, 21].

4.2 VARIETIES OF MAGNETISM

There are generally five types of magnetism which are commonly referenced: ferrimag-

netism, ferromagnetism, paramagnetism, anti-ferromagnetism, and diamagnetism. The

most distinguishing feature about these types of magnetism is their response to a reversing

magnetic field. When all spins within a magnetic material point in a parallel direction, we

refer to this as magnetic saturation. At this point, increasing an external field will no longer

produce a change in the orientation of the internal magnetism of the material. When an ex-

ternal magnetic field is slowly reversed such that we want to fully saturate the magnet in

the opposite direction, one of two things will happen. The first is that the decreasing field-

induced magnetization will be identical to the increasing field-induced magnetization, as

shown in the top image of Figure 4.1. This is the case for diamagnetic, paramagnetic, and

antiferromagnetic materials. In this case, there is no dependence on the magnetic history of

the material, meaning the magnetization is a function of applied field with a singular value

of magnetization for each field value. Additionally, the magnetic permeability, µ , is just
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the slope of the magnetization vs applied magnetic field. For the previously mentioned ma-

terials with a linear response to an externally applied field, this value is nominally constant.

In the second case, instead of reversing magnetization by following the saturation path in

reverse, the ferro/ferrimagnetic materials store a portion of the energy used to saturate and

will follow a different magnetization path. As a result, a ferro/ferrimagnetic material has

magnetic permeability which is a nonlinear function of applied field, rather than a constant

value [20]. This phenomenon of irreversibility is referred to as magnetic hysteresis, and the

specific shape of the hysteresis is of interest for researchers who study magnetic materials.

In order to describe magnetic hysteresis data, scientists will often use the terms coercivity

and magnetic remanence (bottom Figure 4.1).
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Figure 4.1 The top image shows a magnetization curve for a paramagnetic material.
There is no hysteresis and the response to an external magnetic field is linear. The bottom
image shows a representation of a ferromagnetic magnetization curve. Relevant field
values are marked on the image.

There are numerous factors contributing to the actual values of magnetic coercivity

and the remanant field. In the next section, we will specifically investigate magnetic

anisotropies and how they affect the magnetization process.
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4.3 ANISOTROPIES AND DOMAIN WALL MOTION

In general, the magnetization process is not directionally invariant. In other words, the

magnetization path is highly dependent on the spatial direction in which the material is

magnetized. All of the various things that contribute to this directional dependence are

referred to as magnetic anisotropies. These will directly affect the shape of the hysteresis

curve, and the corresponding rate at which magnetization occurs for a given applied field.

One of the most basic of the anisotropies is the crystal anisotropy, which directly corre-

sponds to the structure of the crystal unit cell. A unit cell is defined by orthogonal directions

〈100〉, 〈010〉,and 〈001〉, each of which defines an axis within a crystal cell. As a basic ex-

ample, we will consider a cubic crystal. A cubic crystal magnetized along different crystal-

lographic directions will exhibit varying rates of magnetization along each of its orthogonal

crystallographic directions, and likewise, in directions that are linear combinations of the

orthogonal directions. We refer to directions which can be magnetized with very little field

as ’easy’ directions, and the crystallographic directions with a larger field required to satu-

rate as ‘hard’ directions. The easy and hard crystallographic directions can be discovered

by taking orthogonal slices of a magnetic material along carious crystallographic directions

and observing the resulting magnetization curves. Crystal anisotropy affects the magneti-

zation process by changing the way magnetic domains are formed. Magnetic domains are

isolated "islands" of magnetic spins with equivalent magnitudes of magnetization per do-

main, but different directions of the net magnetization. Domains are not smoothly changing

from one domain to another, but are instead separated by thin "domain walls", over which

the magnetization rotates between the magnetizations of adjacent domains over a very short

distance, as to almost be a discrete change. If we have a magnetic material which has a

zero net magnetization, this does not mean that there is an absence of magnetic domains.

Instead, each domain will spontaneously point in one of the easy axis directions so that

the vectorial nature of the domains yields a net zero magnetization for the whole volume.

Upon experiencing an external field parallel to one of these domains, the domains will re-
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orient themselves in order to minimize the system energy. We can predict how the domains

will be classified and consequently evolve by considering the equation for magnetic dipole

energy,

Edipole =−~m · ~H (4.1)

Edipole =−mHcosθ , (4.2)

where Edipole is the energy from a single dipole, ~m is the magnetic dipole moment, ~H is the

applied field, and θ is the angle between ~m and ~H. In this case, the domain with minimal

energy will be one which is parallel to the applied field. This domain will grow until it

covers the entire magnetic surface/volume. At the point when this domain has overtaken all

others, we have reached magnetic saturation. In the case when a field is applied in an easy

crystallographic direction, a material can be fully saturated simply by domain wall motion,

as described. However, when a field is applied in a non-easy direction, domain wall motion

will still act to minimize energy until there are an equivalent number of minimum energy

domain orientations. Since we were not acting along an easy crystallographic direction,

there may be multiple domain orientations that are equivalent in minimum energy. Domain

wall motion will act to eliminate all domains except the minimum two, and, at that point

domain wall motion ends. Further application of the field causes the entire domain to

rotate the direction of its net magnetization, and this requires much more energy, in the

form of an external field, and is referred to as domain rotation. This is only one of the

many anisotropies, but is the easiest to understand.
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Figure 4.2 Demonstration of domain wall motion and domain rotation. In the top image
the domains experience an external field indicated by Hext . Each individual domain, is
magnetized with Ms. Domains will grow to minimize energy, and therefore, will cause the
domain parallel to Hext to grow until it is the only domain. At that point Mnet is equal to
the magnetization of each individual domain. In the bottom image, the external field is
applied in a direction that is not represented by any of the existing domains in a material.
In this example it is represented as an applied field at 45◦ with respect to the [100] axis.
When minimizing energy, we will end in a situation, shown in instance c) where both
states share an equivalent energy state. With more applied field, both of these domains
will rotate their net magnetization to align to the external field. This Figure has been
adapted from reference [21].
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The more relevant anisotropy to our experimentation is called shape anisotropy. The

name of this particular anisotropy is indicative as to what the particular dependence is.

In addition to considering the crystal structure of a unit cell, we also must consider the

macro/micro/nano-scopic shape of our magnet. Shape anisotropy originates from the dif-

ference in the magnitude of the demagnetizing field within a material along different or-

thogonal directions. The example of a prolate spheroid is solved and is the easiest example.

For a given geometry there exists demagnetization factors along each of the 3 orthogonal

directions where the sum of these three factors is unity. From literature [21] we see that

for a prolate spheroid with equivalent semi major axes, the demagnetization factors along

each direction are.

Nc =
1

m2−1
(

m
(m2−1)

ln(2m)−1) (4.3)

Na = Nb =
1−Nc

2
, (4.4)

where Nc and Na,b are demagnetization constants along the long and short axes of the

ellipsoid respectively, and m is the ratio c
a . The demagnetization field in one direction in an

infinite volume can be expressed as

~Hd = Nd · ~M, (4.5)

where Nd is a generic demagnetization factor, similar to the specific values above. Contin-

uing with our example regarding the prolate spheroid, we look at the demagnetizing energy

for an arbitrary magnetization direction of the prolate spheroid, with M being aligned with

an angle θ with respect to the long axis. The resulting energy will be

Edemag =
1
2

M2(Nc)+
1
2

M2(Na−Nc)sinθ
2. (4.6)

By minimizing the above energy with respect to θ , assuming azimuthal symmetry, we find

that the easy axis lies parallel to the long axis and the hard axes will be in the azimuthal

plane of θ = π

2 . This treatment illuminates the varying factors on which the magnetization

process depends. In section 7.4.1 we will use these facts as a basis of discussion.
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CHAPTER 5

MAGNETO OPTIC KERR EFFECT

5.1 INTRODUCTION AND HISTORY

In order to characterize these aligned fiber agglomerates, we have chosen the Magneto Op-

tic Kerr Effect (MOKE) as the magnetic characterization tool which will be used through-

out all experimentation. MOKE is an optical phenomenon in which a plane polarized

beam reflecting from a magnetic surface will experience a rotation of polarization direction

and/or a change in ellipticity. The nomenclature comes from the founder of this particu-

lar effect, John Kerr, who reflected a polarized laser from the surface of a polished bar

magnet [22]. The effect that he discovered is now called the "generalized Kerr effect",

since the Kerr effect can further be broken into three distinct orthogonal geometries: Po-

lar (PMOKE), Longitudinal (LMOKE), and Transverse (TMOKE) (Figure 5.1). Each of

these three orthogonal geometries is defined by the direction of magnetization within the

material with respect to the optical incident plane.

Figure 5.1 Figures A-C show the three orthogonal MOKE geometries. The difference
between each is the direction of magnetization within the magnetic material. This can be
an intrinsic direction of a permanent magnet, or the induced magnetization of the material
as a result of an external field.
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Each of these three distinct MOKE geometries can be further broken down in to two

separate categories determined by the polarization direction of the incident plane polarized

beam. These polarization directions are defined by the convenient orthogonal basis of a

tabletop experiment: ŝ and p̂, which are polarized perpendicularly to the plane of incidence

and parallel to the plane of incidence respectively. In our experimental setting, ŝ is normal

to the surface of the optical table, and and p̂ lies parallel to the surface of the table, while

also being perpendicular to the direction of propagation of the beam. For each MOKE

geometry there are two different orthogonal "rotations", yielding a total of six different

effects, resulting from the combinations of the three MOKE geometries and two orthogonal

polarization states of the beam. The magnitude of these effects is not easily predictable

for each of these different combinations of MOKE geometries and polarization, as they

depend on the crystalline structure and magnetic properties of the material being measured.

Knowledge of these parameters has yielded theoretical rotations matching experimental

results, however [23]. It is simpler to predict the directions of the various Kerr effects and

polarization states, by doing a Lorentz Force approximation,

~F = q(~v×~B). (5.1)

In the above equation we can replace ~B with the induced magnetization, ~Mind as a

result of the applied magnetic field ~Happ. Next, we replace q~v with the vector form of the

polarization, which can be represented as the electric field of the polarized beam ~E. Now,

with these substitutions, our resulting equation is more transparent,

F̂ ∼ ~E× ~Mind. (5.2)

Note that we have replaced the vector value of the force with the "direction" of the force,

and the equivalence with an approximation. This was done to comply with my earlier

statement that this does not give a magnitude of the the rotation, just the direction in which

the polarization will rotate. Using this equation, we can can show, pictorially, the six

possible interactions below.
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Figure 5.2 Each of two columns represents one of the orthogonal incident polarizations,
while each of the rows shows one of the orthogonal MOKE geometries. In all six of these
images, ~EKerr represents the component of polarization created through the Kerr
interaction, approximated with the Lorentz force. The incident beam propagates along the
-x̂ direction with the ŝ and p̂ polarization directions being in the ẑ and ŷ directions
respectively. ~Er and~kr are the Kerr-independant polarization and propagation vectors of
the reflected beam respectively. The new polarization state will be a linear combination of
~Er and ~EKerr . The direction of each of the ~EKerr vectors is computed with the above
Lorentz treatment of the Kerr rotation, by taking the cross product of the incident
polarization direction, and the direction of the applied magnetic field, according to the
different LMOKE, TMOKE, and PMOKE geometries.

While the Lorentz force formalism is an easy way to quickly approximate the direc-

tional effect of different Kerr interactions, the origin of MOKE is a consequence of the di-

electric properties within a given magnetic material. For an ordinary, linear, non-magnetic
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material, an electric field vector will propagate through a material with directionally de-

pendent diagonalized dielectric matrix ε ,

ε =


εxx 0 0

0 εyy 0

0 0 εzz

 , (5.3)

with εaa corresponding to orthogonal crystallographic directions within any given mate-

rial. When considering a plane wave with polarization direction Ê, incident at the interface

of a material with dielectric matrix ε , we will have a resulting matrix of Fresnel coeffi-

cients which represents the relative intensities of the reflected magnitudes of orthogonal

polarization states.

R f =

rpp 0

0 rss

 , (5.4)

where rxy represents the magnitude of the reflected polarization of incident direction x with

reflected direction y. Note that there are no coefficients that have a mixture of incoming

and outgoing polarization directions. Now we look at the dielectric matrix of a magnetic

material.

ε =


εxx Qz Qy

Qz εyy Qx

Qy Qx εzz

 . (5.5)

Instead of a diagonalized matrix with orthogonal permittivities corresponding to different

crystallographic directions within a material, we have the existence of off-diagonal ele-

ments called Voigt magneto-optic coefficients [24]. These Q factors are highly dependent

on the magnetization of the material being measured, and their existence will lead to a

Fresnel coefficient matrix of values that has two addiditonal elements compared with the

non-magnetic matrix,

R f =

rpp rps

rsp rss

 . (5.6)
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There now exist elements for the mixed polarization states where a p-polarized incident

beam will reflect with a component in the ŝ direction and conversely, an s-polarized beam

will generate a p̂ component. This argument is the basis of Kerr rotations, and the same

argument can be applied to Faraday rotations, but will use the transmission matrix rather

than the reflection matrix. In plain language, the Kerr effect stems from the unequal prop-

agation of orthogonally polarized fields through a magnetic material. Often, we talk about

polarization in the orthogonal linear basis, though in this case, it is more advantageous to

use the circular basis. Propagating plane waves are represented by an exponential function

containing an amplitude, phase, and frequency,

~E(t) = AoÊe−i(ωt−kz−φ), (5.7)

where Ê is the direction of polarization, ω is the frequency of oscillation, k is the wavenum-

ber, t is time, z is the propagation direction, and φ is the phase shift. By taking the real part

of the Euler representation, we can form the typical orthogonal basis of linear polarizations

~Ex(t) = Eox̂e(ikz)cos(ωt), (5.8)

for a linear x̂ polarized component,

~Ey(t) = Eoŷe(ikz)cos(ωt), (5.9)

and a linear ŷ component. Adding these two orthogonal polarizations together would yield

a 45◦ polarization. A simple π

2 phase shift applied to the ŷ basis yields the polarization

representation

~E(t) = Eoŷe(ikz)cos(ωt− π

2
), (5.10)

and

~E(t) = Eoŷe(ikz)sin(ωt). (5.11)
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Adding this phase-shifted ŷ polarized wave to the x̂-basis wave, the result is a sum which

has a constant amplitude at every value of ωt,

~Eccw−circ(t) = Eoe(ikz)[cos(ωt)x̂+ sin(ωt)ŷ]. (5.12)

The above expression represents a counter-clockwise circularly polarized plane wave with

amplitude Eo. We can easily represent the clockwise circularly polarized plane wave by

simply reversing the sign of the ŷ component,

~Ecw−circ(t) = Eoe(ikz)[cos(ωt)x̂− sin(ωt)ŷ]. (5.13)

Adding or subtracting these two orthogonal circular polarizations will return the orthog-

onal x̂ and ŷ polarizations respectively. Finally, we can apply a delay, in the form of the

phase eiθ , to either of the circular polarization equations before adding or subtracting them

to each other. Computing the sum of the phase delayed circular basis will still yield a linear

polarization, however, it will be rotated by angle θ . If a plane wave propagating through

a magnetic material experiences a phase delay in one of its orthogonal polarization direc-

tions, wether it be the clockwise (LCP) or counter-clockwise (RCP) direction of an initially

linearly-polarized beam, the result will be a rotation of the initial linear polarization. Thus

one of the orthogonal circular polarization directions is delayed as it interacts with the mag-

netic material, yielding the off-diagonal fresnel reflection coefficient. The existence of the

off-diagonal elements in the permittivity matrix is a source of this delay in the propagation

of the RCP vs LCP polarization, and as stated earlier, will yield a "Kerr Rotation". For a

full explicit mathematical treatment of the Kerr effect see references [25, 26, 27].

5.2 EXPERIMENTAL APPLICATION OF MOKE

In order to bridge the gap between MOKE theory and quantitative magnetic information,

one must design a MOKE experiment that yields relevant magnetic data. While the phe-

nomenon of MOKE yields a rotation of polarization from the surface of a magnetic mate-

rial, we are interested in information regarding magnetization properties of the material in
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question. Instead of simply looking at the rotation of polarization from a magnetic surface,

which presumably is fixed at a constant magnetization, modern MOKE experimentation

uses an externally controllable magnetic field in order to sweep the magnetization of the

material from a negative minimum field to a positive maximum. During the reversal of

the magnetic field, the rotation of the polarization is monitored and recorded continuously.

Because the reflected polarization is proportional to the magnetization within the material,

the data produced by a MOKE experiment is able to be identified as the magnetic hys-

teresis of the magnetic material. As stated earlier in chapter 4, magnetic materials have

a type of magnetic memory called hysteresis, in which the magnetism within the material

is highly dependent on the previous magnetic state of the material. MOKE implemented

with an external sweeping magnetic field allows us to locate the remanence, which is the

amount of magnetization when the the external field is reduced to zero, and the coercivity,

the external magnetic field magnitude required to reduce the magnetization to 0.

Photodetectors

Polarizing 
beamsplitter

Convex lens

Electromagnet

Magnetic 
sample

Figure 5.3 An example of a basic LMOKE experimental design. The most important
features are included in this image. Starting from the laser source: a polarizer to ensure
unidirectional polarization, convex lens to reduce optical spot size, a magnetic sample
mounted between poles of an externally controllable electromagnet, a second convex lens
to refocus the reflected beam, a second polarizer, and a pair of photodetectors.
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At first glance the use of experimental MOKE is simple and straightforward. In chapter

7, we will demonstrate how the very basic MOKE geometry can be modified experimen-

tally to do much more than just monitor the magnetization of a polished magnetic surface.

Additionally, we will show how many small difficulties are involved in gathering high

quality MOKE data.
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CHAPTER 6

FIRST ORDER REVERSAL CURVES

6.1 INTRODUCTION

Before First Order Reversal Curve (FORC) experiments were widely used, an untitled

experiment was carried out by Ferenc Preisach investigating the source of the magnetic af-

tereffect in a theoretical magnetic system containing a distribution of magnetic interaction

fields and coercivities [28]. Notably in this experiment, he treated single domain particles

as square hysteresis loops which had a distribution of coercivities and "pre-magnetizations"

(non-zero loop centers). This type of treatment and interpretation would become the basis

of many FORC experiments in the future. Since then, the method has been coined with the

official title FORC, and his mathematical magnetic particles have been called "hysterons"

(Figure 6.3). Numerous experiments have been carried out by various groups which have

sought to quantify and explicity understand the results of these data that come from FORC

[29, 30, 31, 32, 33].

6.2 THEORETICAL BACKGROUND

Ordinarily, when gathering magnetization data, as shown in previous sections, a material

is magnetically saturated by applying a large external field. From the positive magnetic

saturation, we can saturate the same material in a negative direction to see the remanence,

coercive field and, negative magnetization values. In a material that is uniform and ho-

mogenous, the shape of the magnetization curve will smoothly change from +Hmax to

−Hmax. In the case of a multi-particle system with inhomogeneities, whether they be in-
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terparticle spacing, variable sizes, inconsistent coercivities, or different interaction field

strength, we will expect to see some sort of non-smooth transition between the minimum

and maximum magnetization states. FORC offers an avenue to investigate the source of

these non-smooth magnetization transitions, if they are visually obvious, or even discover

interactions within a material originally thought to be magnetically homogeneous. FORC

data is acquired by a modification of the typical magnetization curve measurement. Rather

than simply ramping the applied field between ±Hmax, we increase the field to +Hmax but

only decrease to a variable minimum field value, known as the reversal field, Hr. Hr can

range, in nominally equally spaced steps, between ∓Hmax. The result of this type of mag-

netic ramping will yield a family of minor hysteresis loops all enclosed within the major

hysteresis loop, (MHL) and will resemble the image seen in Figure 6.1.
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Figure 6.1 A representation of a family of FORC curves for a mixed magnetic state. The
blue curve represents the outer major hysteresis loop, while the orange curves represent
each equally spaced reversal. In the case of this schematic, the magnetization path of each
reversal curve is identical to each other reversal.

Above we have the reversal path from +Hmax to−Hmax colored in blue, while the minor

reversals are in orange. The number of reversals are limited by the resolution of the mag-

netic field used in an experiment, but more reversals will yield a higher resolution FORC

diagram in future analysis. From the raw data, represented by the family of FORC curves,

Mayergoyz [29] showed that given a system following the reversal process shown in Fig-

ure Equation6.1, we should be able to create a "Preisach Diagram" by executing the mixed

derivative in Equation6.1. This assessment is contingent on two separate conditions being

met: the congruency of minor loops, and the wiping-out property (minor loops should per-

fectly close after one cycle) [29]. This Preisach diagram would follow a certain type of
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analysis as long as both of the above conditions were met. In most systems, one or both of

these conditions are violated. Thus experimentalists have separated the FORC experiment

from the classical Preisach model, and have begun to treat it as a separate experiment with

unique interpretations [31]. Using a FORC distribution, there are no restrictions on which

type of system this is applicable for, but this leaves much more room for analytical inter-

pretation as to the results of a successful FORC distribution and the resulting implications

therein. The mathematical representation of the FORC distribution is

ρFORC =−1
2

∂ 2M
∂Ha∂Hr

, (6.1)

where Ha is the applied field. Equation6.1 is a double derivative, where the first is taken

as a typical derivative of the hysteresis along the applied field direction, while the second

is taken with respect to the reversal field direction. Even though this is identical to the

classical Preisach diagram, the result of the mixed derivative is referred to as a FORC

distribution, resulting in a FORC diagram. In plain language, the result of this derivative

will reveal "how does the slope at any applied field point change if we start from a different

reversal value". As a visual example, we use Equation 6.1 on the cartoon representation of

FORC curves in Figure 6.1 which will yield a FORC diagram represented in Figure 6.2.

In order to illuminate some of the difficulties visualizing the transition from a traditional

magnetization set of coordinates to that of a FORC diagram, the image from Figure 6.1 is

shown mapped to the new coordinate system which is used when viewing FORC diagrams.
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Figure 6.2 The top Figure shows a typical family of FORC curves, similar to Figure 6.1,
while the bottom curve shows how the data changes following the analysis of 6.1.
Derivatives are taken in coordinates Ha and Hr while the FORC data is represented in a
rotated coordinate system Hc and Hu. At instance ’A’ in the top graph, we see how the
slope of the lowest reversal changes, with the same applied field, with respect to the next
reversal above it. This curvature change is mapped to the new coordinate system as a
sharp spike, with the color gradient indicating the 3D nature of a FORC diagram. At point
’B’, we have a similar situation, where all reversals beyond a certain point will no longer
leave the flat part of the hysteresis loop, and, thus will no longer have the slope behaviour
seen in previous reversals. The first time this happens, at B, will map the final signal spike
to the new coordinate system.

From Figure 6.2, we can see the complexity of even a simple magnetization process.

Rather than manually looking for changes in slopes as we change reversal field values, this

type of derivative will reveal sharp discontinuities where changes in the reversal process
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occur. Translating this mixed derivative to experimental data introduces a significant mag-

nitude of noise if these derivatives are taken literally. Originally introduced by Robert Pike

[31], a variable numerical method was introduced to extract the value of Equation6.1 for

every point in a family of FORC curves without the need for any actual differentiation. By

creating a matrix representation of the full family of FORC curves, we can fit each point,

centered within an N×N subset of neighboring points, with a polynomial surface:

K0 +K1Ha +K2Hr +K3H2
a +K4HrHa +K5H2

r (6.2)

For each point in the matrix representation of the family of FORC curves, the K4 coef-

ficient will represent ∂ 2M
∂Ha∂Hr

. By increasing or decreasing the size of the N×N window of

points, one can effectively increase or decrease the resolution of the fit by including more

points contributing to the polynomial surface fit at the point of interest. Different modifica-

tions have been made which have improved resolution by introducing weighting functions

when selecting a window of N×N points, effectively allowing non-integer window sizes

[34]. When transforming our raw experimental data into a FORC diagram, we choose an

alternative method which uses the literal definition of a derivative with some numerical

smoothing in order to extract the the FORC density and compare it to previously pioneered

methods. Completing the second derivative is only the first step towards interpreting the

results of a FORC diagram. Following formalism introduced by Preisach, we pick a new

symmetric coordinate system which is simply a rotation from Hr and Ha in which to present

and analyze our data,

Hu =
1
2
(Ha +Hr) (6.3)

Hc =
1
2
(Ha−Hr), (6.4)

where we have two new coordinates, Hu the interaction field, and Hc the coercive field.

These coordinates were already shown, but not introduced in Figure 6.2. We note that

the coercive field cannot be negative as the coercivity in a magnetization curve is a non-

negative value and Hu can be positive or negative, indicating the direction of interaction
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field value. FORC data has historically been very difficult to interpret and there have been

various experimentally proven interpretations of the resulting contour plots.

One interpretation of a family of FORC curves is that it is composed of fundamen-

tal magnetic particles called hysterons. In earlier FORC interpretations, hysterons were

taken to be rectangular hysteresis loops of differing coercivities. From the early interpreta-

tion, more fundamental hysterons have been introduced in order to model and characterize

FORC diagrams (Figure 6.3).

Figure 6.3 Left, middle, right are linear reversible, irreversible, and fully reversible
vertical hysterons respectively. Originally, only the middle hysteron was used in
describing a system of FORC curves.

Reference [33] treats these hysterons as single domain magnetic particles, following

the Stoner-Wolfarth model. These particles are used to simulate large assemblies of like-

hysterons. FORC analysis is carried out on these assemblies of hysterons in neutral, non-

interacting conditions, and the results are compared to FORC diagrams under the influence

of mean interaction fields aligned parallel or antiparallel to the magnetization direction of

the simulated structure. The results of these simulations can be summarized with the gen-

eral rule that a negative interaction field will cause a spreading of the FORC signal in the

Hu axis, while a positive interaction field will cause a shift of the FORC peak along the

+Hc axis (Figure 6.4). Unfortunately, as many FORC conclusions tend to be, these effects

only work for structures created by a singular type of hysteron, and a linear combination

of these three hysterons will not yield a FORC diagram which is also a linear combination

of the individual FORC diagrams from each of the hysterons. However, this data is illu-
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minating for systems where the magnetization process closely resembles that of one of the

fundamental hysterons, such as nanowire arrays or thin films [35, 36, 37].

Hint=0 Hint>0 Hint<0

Hc

Hu Hu Hu

Hc Hc

Figure 6.4 Figures adapted from reference [33]. Simulated experimental results of
different interaction fields acting on a system of identical, irreversible square hysterons.

One of the modern motivators of the resurgence of FORC investigations is Robert Pike,

As stated previously, his contributions cemented FORC as its own measurement rather

than being an extension of the classical Preisach model which is bound by certain criterion

found in reference [29]. Pike mathematically used the hysteron treatment of multi-particle

systems to predict the resulting FORC curves for different types of particle interactions

and distributions [38, 31]. Following this mathematical prediction, the authors of reference

[39] sought to qualify the predictions made by the mathematical analysis of Pike et al.

Using samples with known morphology, the authors compared FORC diagrams with the

predicted distributions. Figure 6.5 shows an adaptation of some of the relevant results.
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a) b) c)

Figure 6.5 Figures adapted from reference [39]. The color indicates the value of the
contour, with red being the highest and deep blue being a negative value. All simulations
were compared to magnetic sedimentary rocks in which certain distributions of magnetic
particles were known to appear. a) single domain noninteracting particles b) single domain
particles with randomly assigned interaction values and c) single domain particles with
randomly assigned fields and a mean interaction field parallel to the net magnetization.

The investigations from reference [39] were all carried out on naturally occurring mag-

netic sediment as a means to characterize these materials, and thus the types of features are

more general when compared to arrays of nanoparticles/nanopillars or complex interacting

magnetic systems. Further features arise when investigating more complex interactions. In

many investigations into arrays of nano materials, a characteristic "wishbone" shape was

identified in FORC diagrams [40, 37, 35, 32]. A representation of this wishbone shape

is seen in Figure 6.6. It is often seen with the vertex of the wishbone off of the Hu = 0

axis. Through simulations using the hysteron model, it was found that this shape could be

reproduced by a family of FORC curves which were created from a collection of hysterons

with a gamma distribution of coercivities and a negative mean field interaction. This may

be unsurprising considering that the samples where this characteristic shape is found are

arrays of magnetic antidots and nanopillars [40, 35, 37].
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Hc

Hu

Figure 6.6 Characteristic wishbone often seen in FORC data representing arrays or
collections of nanoparticles or nanopillars.

An interesting feature that has been observed in FORC measurements has been the

crossing of the MHL by minor reversals, viewed in raw FORC data. First pointed out in

reference [40], it has been explicitly identified at least one other time [41]. The former

related a similar behavior to that shown in the appearance and disappearance of out-of-

plane (OOP) magnetization components where the loops cross, and subsequently cross

back over.

As stated earlier, much is still unknown regarding the interpretation of FORC results,

but most, if not all, of the more complex features seen are identified experimentally and

then artificially created via simulation to confirm the behavior.
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CHAPTER 7

EXPERIMENTAL ENDEAVORS

7.1 INTRODUCTION TO THE LAYOUT

This Chapter is intended to cover all of the physical work that was completed and that I

have considered relevant. I will lay out my experimental process in an an approximate

chronological order of things being completed to illuminate some of the difficulties of the

experimental journey, and the necessity and importance of having as much information as

possible. The summation of my work culminates with a new measurement technique which

is subsequently adapted to magnetic measurement capable of lending insight on a complex

magnetic multi-body system.

7.2 THE QUARTER WAVE PLATE AND ITS APPLICATION

Most of my first few months working in the lab was spent understanding basic experi-

mental optics. This includes polarization between cross polarizers, aligning and walking a

beam, and most importantly, understanding what a quarter wave plate is and how exactly it

works. In theory, a quarter waveplate is not an over complicated optical element, and most

descriptions of its function reads similarly to this : A quarter wave plate induces a phase

shift in one of the two orthogonal polarization states of the plane wave, thus resulting in

a circular polarization state which cannot be extinguished with one polarizer and has an

equal amplitude at all polarization angles. Mathematically, as we have seen before, this is

as simple as adding a phase shift of π

2 to one orthogonal state,
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Elinear =E0[p̂e−i(ωt)+ ŝe−i(ωt)] (7.1)

Ecircular =E0[p̂e−i(ωt)+ ŝe−i(ωt− π

2 )]. (7.2)

One orthogonal state now lags π

2 behind the other, so that the magnitude of Ecircular is a

constant in time. A quarter wave plate is an invaluable tool when ensuring linear polariza-

tion, due to its ability to induce and remove ellipticity from the polarization state. When

an experiment requires a high order of linear polarization, a simple inclusion of a quarter

wave plate is a wise choice.

7.2.1 DIFFERENTIAL DETECTION USING A QUARTER WAVE PLATE

When first introduced to experimental MOKE, I was also introduced to the idea of dif-

ferential detection. Differential detection is used when detecting a very small change in a

relatively large signal. In the specific case of MOKE, the effect we observe is a very small

rotation of the polarization state of an optical signal. Each of the two differential detectors

is calibrated to detect only one orthogonal polarization state and the resulting signals from

each detector are subtracted to nominally yield an initial difference of zero. Figure 7.1

shows two ways in which this can implemented in a MOKE system.
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Figure 7.1 Two ways in which differential detection could be applied to our MOKE
experiment. In the top image, an initially polarized beam has a small component in the ŝ
direction and the beam splitter will pick it off into its own detector. The p̂ signal will go
into a second detector. To balance these, one must use a neutral density filter (NDF) to
reduce the p̂ signal until it has the same initial amplitude as the δ ŝ signal. this can be
particularly difficult if the difference between them is large. Additionally, the NDF will
also reduce the effect of the rotation because it reduces all signal passing through it. In the
bottom case, we pass the same initial polarization state, but use a quarter wave plate
(QWP) to FORCe circular polarization from this linear state. Now the magnitude of the
two orthogonal states will be the same due to the nature of circular polarization. A change
in ŝ or p̂ will not be reduced by the NDF.

When a rotation does occur, the originally balanced detectors will see a reduction of

signal in one detector and a proportional increase in signal in the other. By subtracting the

signals in the detectors we will observe a total signal increase which is double the total

change in polarization. If we have an initial state

Ê0 = E0[p̂+ ŝ], (7.3)

and the effect of our experiment causes the new state to be

Ê f = (E0−δ )p̂+(E0 +δ )ŝ, (7.4)
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then the difference between the two signals (Is and Ip) will be∼ 2δ . Additionally, any noise

source in both detectors will be ideally removed due to the process of taking the difference

of signals.

When work initially began on this project, I was instructed to use the lower scheme

from 7.1, and was given a QWP to use. As a new experimenter, I assumed that I had the

ideal piece of equipment, and that experiments worked as well as theory. Naturally, the first

step to making a circular polarized beam was to simply place the QWP at normal incidence

with the polarized beam and rotate it until the signal through an initially crossed polarizer

is at a relative maximum.

Polarizer Analyzer
QWP Detector

Figure 7.2 The basic initial QWP experiment. Plane polarized light was passed through
a polarizer oriented in the p̂ plane. Next, the p̂-polarized light was passed through a QWP
in order to induce circular polarization. The analyzer is set to pass ŝ-polarized light. As
the QWP is rotated toward circular polarization, the initially cross polarized signal
reaches a maximum. When a maximum signal is found, the analyzer is rotated to find the
degree of circular polarization (equation 7.5).

Following this step, we then rotate the polarizer, and celebrate as the magnitude of

the signal remains constant due to circular polarization. This was not the case, however.

At best, with this approach, I was only reaching ∼ 85% circular polarization by using an

equation of my own design.

DoCP =
Smin

Smax
, (7.5)
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where DoCP is the degree of circular polarization and Smin/max are the maximum and min-

imum signals observed upon rotation of the initially crossed polarizer. Various repetitions

of this same micro-experiment continued with similar results, while I mentally insisted that

I was not being careful enough with my alignment, even though optical orthogonality was

meticulously ensured. Reading some literature about how the actual piece of physical op-

tics worked, I understood that each QWP is crafted specifically for one optical wavelength

and the induced phase shift is achieved by picking a specific thickness of a birefringent

material that will pass one polarization undeterred (fast axis) and retard the other polariza-

tion state (slow axis). The thickness of this birefringent material is specifically chosen so

that the delay is equal to one quarter of a wavelength of light, hence the name quarter wave

plate. From here, it was discovered that the QWP was designed for an 780 nm (Thorlabs

WPQSM05-780) wavelength beam, and our laser has a peak at ∼790 nm with a FWHM

of ∼ 25nm. With a bit more knowledge about the function of the QWP, I was able to diag-

nose the source of my problems. Furthermore, after an investigation into Hecht’s excellent

optics textbook, I found that if a QWP is not designed specifically for the wavelength of

light being used, a simple tilt of the QWP about one of its own axes (fast or slow) will

increase the path length that must be travelled, and thus will increase the amount of retar-

dation induced by the QWP. Following this discovery, I switched the optical source from

femtosecond pulses to a continuous output, thus reducing the FWHM of the optical wave-

length to a mere few nm from ∼ 25 nm. With an optical source that was much closer to a

singular wavelength, I used my original experimental techniques and found that with the

addition of tilting, I was able to acquire a 95% circular polarization from an initially plane

polarized beam. Furthermore, I extended this approach to also include a second detector.

Instead of checking the minimum and maximum signal passed by the analyzer, I simply

added a detector placed to detect the orthogonal signal as in Figure 7.1b. While this may

not ensure perfect circular polarization, the ultimate goal of this approach was to balance

two signals for a MOKE differential detection scheme. With this less strict qualification of
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circular polarization, I was able to easily balance the two signals with the addition of QWP

tilting. The direct application of the quarter wave plate will be described in full context in

section 7.4.1.

7.3 FINDING THE CORRECT "X" AXIS

When viewing magnetization data, the Y axis of a hysteresis loop is typically the magne-

tization of a material and the X axis is the applied field which induces that magnetization

which was shown earlier in Chapter 4. In an experiment such as MOKE, where the instru-

mentation is not calibrated to output a Y axis of Magnetization, it is often taken to be in

arbitrary units with the maximum and minimum values being ±1 respectively. Since the Y

values are magnetization in arbitrary units, the implication is that the X axis must be rele-

vant and accurate in order to convey any amount of correct information. This section will

outline the importance and subsequent process of acquiring a properly tracked magnetic

field in the context of MOKE, and, more importantly, in the more dynamic case of FORC

magnetization.

As the reader will notice in this document, some of the MOKE curves have current

as the horizontal axis. Early in experimentation, the importance of the nonlinear relation-

ship between the applied current and resultant magnetic field was not considered. Rather

than a paramagnetic field response, our electromagnet displays a ferromagnetic magneti-

zation process with hysteresis and saturation. Figure 7.3 shows the typical response for the

electromagnet that we have used.
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Figure 7.3 Left) The nonlinear relationship between the applied current and the resulting
magnetic field. If we use ”small” fields (±1 kOe), we note a fairly linear relationship
between H and I. For all other field values the relationship is nonlinear. Right) The minor
loop behavior of the magnet itself. Starting and ending at different symmetric current
values will yield a different curvature near the start of each respective curve. Using just
one lookup table will result in an incorrect field assignment due to the existence of minor
loops in the magnet.

Using data which maps I to H, we create different "lookup tables" for each different

regularly used current range. For example, with liquid cooling, our electromagnet can run

between ±4.5amps, so we create lookup tables for ±4.5,±4,±3.5,±3 and ±2.5 amps.

The resulting I to H graph is shown in Figure 7.3b. Due to the ferromagnetic nature of

the magnetic core, each of these different endpoints will result in a different minor loop,

and thus a different magnetic field for the same values of current. Retroactively plotting

data which has been taken with evenly spaced linear current steps will result in a nonlinear

set of field steps. The nonlinear relationship is visually obvious, as can be seen in Figure

7.4. Even though the first set of data has evenly spaced steps in current, we see that when

we use a lookup table to convert the input current to the realistic field, there is a heavy

concentration of points near the saturation field values and a comparatively lower density

of points near the zero field value, where curvature is likely to change and remanence takes

place. The implication of this graphical representation is that we must strive to take even

steps in magnetic field rather than evenly spaced steps in current.
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Figure 7.4 Two representations of the same MOKE data. The left hysteresis loop is
plotted vs.current, while the right was plotted vs.field, using the same current values and a
lookup table.

Functionally implementing these lookup tables into our LabVIEW code was not overly

complicated. The method to achieve linear spaced field values is the same for all ranges

of current, so this description will be general. A lookup table will have a maximum field

(Hmax) associated with the maximum current (Imax). The LabVIEW interface allows se-

lection of "maximum applied field" from a preset dropdown menu, and thus that dictates

which lookup table to build a linear set of field steps from. From this point we use the

maximum allowable field and the desired number of steps to create a field spacing.

∆H =
Hmax−Hmin

N
(7.6)

where ∆H is the step size, Hmax is maximum field value from the lookup table, Hmin is

the min field from the same lookup table, typically a sign reversal of the max field, and N is

the number of steps intended to be used between max and min field. With the ∆H selected,

we then construct an indexed list of field values incremented by ∆H running between Hmax

and Hmin. For each field value, the lookup table is searched for a field value which is closest
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to the value determined by i·∆H, where i is the iterating index. Because our lookup table

has finite points, it is unlikely that we will ever find a desired field value which is actually

on the table. Instead, we will often find a point that is "very close" to the point we want. At

this point we have two options: use the point closest to the desired field value, or interpolate

between small field spacings in order to have nominally evenly spaced field points. If we

choose to use the closest point, our job is easily completed with a few simple steps. The

desired field value is subtracted from every indexed value within the lookup table of field

values. The resulting value from this subtraction which is closest to zero is selected as the

field value which is "close enough" to evenly spaced. The corresponding index for that

value is recorded and the current of the same index is recorded to build a nonlinear current

table which will yield an approximately linear set of field values. If we choose, instead,

to insist on evenly spaced field steps, we must do some interpolation. The method used is

not difficult to do for a single point by hand, but it ends up being more arduous to create

a functional piece of software that works in all cases. The interpolation assumes that the

step size between neighboring field points in the lookup table is small enough such that

the relationship between current and field is linear. For the following set of equations, we

assume that we are looking for a field value, H0, between bounding field values from the

lookup table, Hi and Hi−1,

∆Hi = Hi−Hi−1 (7.7)

∆H0i = H0−Hi−1 (7.8)

S =
∆H0i

∆Hi
(7.9)

∆Ii·S = ∆I0i (7.10)

Ii−1 +∆I0i = I0, (7.11)

where ∆Hi is the field spacing between indexed field values on the lookup table, ∆H0i is

the difference between our desired field value, and the lower bound of the indexed lookup
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values, and S is the ratio which determines in which fraction of the spacing between lookup

table values, Hi and Hi−1, lies our desired value. ∆Ii is the spacing between the current

values which share an index with the field values, ∆I0i is the difference between the smallest

current and the desired current, as determined by S, and finally, I0 is the interpolated current

value which will yield the desired field value H0. Both of these methods will yield a

nominally linear set of field points which can be seen in Figure 7.5.
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Figure 7.5 Data from a lookup table yields linear current steps corresponding to
nonlinear response in magnetic field. Using previously mentioned methods, current
becomes nonlinear in order to create linear steps in magnetic field.

Ideally our job is done, and the implementation of the interpolation function can be

added to the LabVIEW program which controls the MOKE experimental data acquisition.

In order to verify the linearity of our field steps, the calculated field steps were compared to

the actual measured steps for different step rates ( time
step ). From these rate tests, we found that

there was a nonlinear dependance on the deviation of our expected value from the actual

measured value of field. The ideal rate and the deviation from the expected value can be

seen in Figure 7.6
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Figure 7.6 Each of the lines above represents the difference between the expected and
measured magnetic field values for different wait time between data points. At the highest
ramp rate of 30ms/point, the deviation from the ideal field value reaches ±100 Oe at the
max and min respectively. As the wait time between points increases, the difference
between actual and measured points decreases.

The difference between expected field and measured field, ∆HEA, increased exponen-

tially at each point, yet the exponential dependance was not the same for each different

point. We see in Figure 7.7 that we have good exponential fits, but no singular fit function

in which we can use to predict this offset for any given single point.
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Figure 7.7 Each of the four lines above represent ∆HEA at a single data point, each taken
from one of the different lines from Figure 7.6. The horizontal axis is simply the different
wait times in which the data points were taken. We see here that the offset from the
expected difference of 0 scales exponentially with wait time.

It is clear that there is a nonzero rise time of the current-generated magnetic field pro-

duced by our magnet. The important question that must be asked is "Can we simply wait

longer to reduce ∆HEA?". Unfortunately in the context of experimental MOKE, as will be

revealed later, the answer is "No". The experimental endeavors involving MOKE require

several to hundreds of averages in order to produce data with high enough SNR to be use-

able. If each data point takes ∼ 2− 3secs to complete, and a data set has, at minimum,

100 points, then the total time for a data set of 100 averages will take no less than 5.5 hrs.

If we wanted to increase the point density, i.e. the resolution of the magnetization curve,

the time increases accordingly. As in many cases of experimentation, the goal is to acquire

data that is both quick and relevant. Minimizing the offset by simply waiting longer per

point will not satisfy the "quick" condition. With the hope of predicting the rise time of the

magnet, we begin to monitor magnetic response, given a discrete step in current. Figure

7.8 shows the magnetic response and two different fits. For an air-gap electromagnet, the
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expected dependance on the rise time is exponential [21], but instead we observe that the

magnetic rise is fit much more closely with the use of a sum of two exponential functions.

Fitting of these magnetic responses were carried out using a home made Igor Pro procedure

which can be seen in Appendix A.1.3. According to literature, this type of effect, known

as the magnetic after effect, is common in iron core magnets, which have a large amount of

magnetic material to rotate, though it is not exclusive to physically large magnets [21, 28].
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Figure 7.8 Shown in the largest image is the magnetic response to a discrete change in
current. The magnet has an exponential-like response to this discrete change in current.
The expected fit would be a single exponential. We see that the resultant fit of the single
exponential fails to fit the raw data at several parts of the graph.

At this point we are able to verify that the particular curvature of the magnetic rise time

is indeed due to the magnetic after effect, and according to the graphs in Figure 7.8 the time

to reach ∼ 95% of the intended value is ∼2 full seconds. This means, that if we want to

continue to use lookup tables to find linearly spaced field values, we must wait two seconds
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per data point, which is unacceptable given the need for improved resolution via averaging.

This method of axis calibration seems to be a dead end due to exponential rise times and

inconsistent time dependent deviations from expected values. Beyond having an accurate

field axis for the sake of being complete, we seek this type of precision for the facilitation of

FORC measurements. This particular measurement requires differentiation of raw data in

both the X and Y directions. Ideally, points in X lie on an evenly spaced array to facilitate

this differentiation. If we take fewer data points between ±Hmax, the slight offset of our

actual field values is negligible, but this also lowers the resolution of our resulting density

function (as described in section 6). We seek to have a high density of evenly spaced field

values with corresponding MOKE responses at each curve, and therefore, we must change

how we construct our field axis.

For all lookup tables, we use a Gauss probe capable of outputting 1000 samples/sec.

Initially field data was acquired using (F.W. Bell Model 6010 Gauss/Tesla Meter), but

after a mishap which led to the demise of the first probe, it was replaced with a different

model (Meggit 5180 Gaussmeter). The probe has a BNC analog output which is able to

represent magnetic field with equivalent voltage. For example, 1k Oe would output 1V or

a different voltage scaled by a factor of 10. The rate in which the probe outputs is much

faster than it is ever acquired when constructing a lookup table because the faster speed

would just cause a larger offset due to the magnetic after effect, if we were to make a

lookup table very quickly then use it later at a different rate. As it stands, we measure

Kerr data as a function of ideally linear field steps determined from a pre-made lookup

table. Instead, if we could monitor both vs. time, we can remove time as a common axis

and acquire MOKE vs. Happ. The Lecroy Waverunner 64xi oscilloscope is capable of 5

gigasamples per sec acquisition. The capabilities of this instrument makes the 1000S/sec

output of the magnetic probe seem comparatively slow. Using the analog outputs of the

magnetic probe and Lock-in amplifier, we begin to monitor both magnetic field and Kerr

signal through the oscilloscope. The only consideration that must be accounted for at this
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point is the integration time of the lock-in amplifier. Ideally, the integration time should

be at least 3x less than the rate of data collection. Lowering integration time increases

noise, but increases point density and speed, so it it is a necessary step. The time constant

for MOKE via the oscilloscope is changed to 300µs rather than 30ms, which was the

previously used time constant for MOKE using lookup tables. Using a 10 second window,

we are able to input a large volume of simultaneous MOKE and magnetic field data through

the oscilloscope (Figure 7.9 ).
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Figure 7.9 Data acquired through the oscilloscope for both magnetic field and Kerr
rotation. The first graph shows the data as seen on the oscilloscope, which is plotted vs.
time. For each point in time, Kerr rotation is plotted against magnetic field yielding the
graph in the right image.

With the pivot to using the oscilloscope to input and save data, the function of Lab-

VIEW is simplified to only control the magnetic field values with no function of data

recording. By changing from a pre-made lookup table to an in-situ measurement of field

and Kerr rotation, we are able to take advantage of the density of points to produce the

above graph with a full 10,000 data points. This is relevant when seeking points with nom-

inally evenly spaced field values. With such a small change in field per point (∼15 Oe),

we can now employ similar interpolation techniques as we had done for the lookup tables

before (starting with equation 7.7).

With every new solution come additional experimental problems to overcome. The

magnetic probe does not produce noiseless output. Just like our MOKE signal, we employ
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the same number of averages to the signal output from the magnetic probe. Rather than

simply reducing the noise of the magnetic probe, the averaging revealed some artifacts of

bad programming within the probe itself (Figure 7.10).
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Figure 7.10 Due to the fact that there exists noise in the magnetic probe, we also average
the output of the field, as well as the Kerr rotation. On the left is a typical set of magnetic
field values starting at +Hmax and descending to -Hmax. The blue data is 200 identical runs,
while the orange line within represents the average of those runs. The Figure on the right
shows that upon averaging, this data becomes less noisy, but shows discrete steps near the
negative minimum, where ∂H

∂ t is low. These steps are consistently 25 Oe.

Investigations into the origin of these discrete hidden-by-noise steps reveal that it was,

"built into the firmware for an unknown reason", according to the supplier. The existence

of these steps means that we are now, once again, unable to trust the values of our magnetic

field, but this time, it’s just at the endpoints where the change in field is small with respect

to time. With the knowledge of the functional form of field rise time, the decision was

made to replace the slowly changing portions of the magnetic field curves with an appro-

priate fit (Figure 7.11). Initially the double exponential fit was used, but observation of

the fit coefficients showed little to no dependence of the second exponential in this slowly

changing subsection of the graph. Fitting was facilitated with an Igor Pro procedure which

allows the selection of a portion of the graph to replace using three cursors (section A.3.5

in Appendix). The first is the start, the second is the end of the fit, and the third is the ad-

ditional points beyond the fit, in which we will replace points according to the fit function.
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The choice to include a 3rd cursor comes from a suspicion of how the discrete steps in the

field graph originate. Since they are discrete, it is likely that when the magnitude of the

field passes a certain threshold between consecutive 25 Oe steps, it is placed into the next

25 Oe field value. This can be seen in the right image of Figure 7.10, where there are large

flat areas and then a discrete 25 Oe step.
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Figure 7.11 Using a single exponential fit, we are able to approximate the behavior of
the magnetic field as it approaches saturation. The graph on the left is fit between 3700
and 4700 ms, with the fit function extended to 5250 ms. The graph on the right has a fit
between 3650 and 5200 ms, with the fit extended only a few ms further. Although it is less
apparent from a macroscale view, the insets show how well the fit matches up to the
smoothly changing data.

We see via the insets that the areas where the data is nominally flat are likely due to

some conditional statement within the magnetic probe software, and not representative of

an actual 25 Oe step to that value. By selecting a point near the final discrete step (∼4700ms

in Figure 7.11), rather than at the end of it, we see that the fit flows seamlessly into the real

data. We use this technique in conjunction with our knowledge of the exponential behavior

of the magnetic response and LOESS smoothing of the averaged magnetic field to correct

the errors caused by the questionable Gauss probe software. With these methods we are

now able to realistically represent the applied magnetic field and, due to the large density

of points, we are even able to extract fewer points in order to have equally spaced magnetic

field steps. Additionally, using the an oscilloscope allows us to speed up an individual
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MOKE run by now being limited by the size of the window on the oscilloscope, which

was often 10 seconds with a 2 sec wait to allow the trigger to reset. For regular MOKE

applications we have improved both the accuracy of the field values and the rate in which

data can be acquired.

7.3.1 PREPARING ASYMMETRIC REVERSALS

In future experimental sections we see the success of a novel MOKE method which is

able to facilitate the acquisition of low-noise magnetization curves on aligned Janus fiber

agglomerates. From low noise magnetization data acquired using MOKE, we decide to

use MOKE to acquire FORC, as described in Chapter 6. As a reminder, the first step of a

FORC analysis is gathering asymmetric magnetization curves. In fact, the steps of applied

field tend to look like the image shown in Figure 7.12.
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Figure 7.12 The shape of a typical X axis for a single full FORC with only 3 reversals.
From start to finish, the field reaches a reversal point (Hr) and returns to Hmax, with each
subsequent reversal reaching a less negative value. Nominally the Hr values are evenly
spaced to facilitate a set of derivatives on the future FORC data. Magnetization data is
recorded thoughout the process.
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Part of the future FORC analysis requires that two separate derivatives are taken on the

data, as stated in Chapter 6. The way we parametrize FORC data is with the two field values

Hr and Ha, where the former is reversal field, and the latter is applied field. For example, in

the graph above, if we were to refer to the point with Hr =−1.31 and Happ = 0, we would

be referring to point 440. Basically, the reversal field values serve to separate each of these

"minor" loops. Our future derivative will involve the typical derivative with respect to the

applied field (the typical x axis for a MOKE loop), but the second derivative is with respect

to the reversal field value, comparing how the typical change of magnetization with respect

to field, ∂M
∂Ha

, changes between different minor reversal loops. In order to facilitate these

derivatives with minimum interpolation (we end up having to do quite a bit of it anyway),

our goal is evenly spaced values in both of the differentiable variables. As shown in Figure

7.12, the reversals are fairly evenly spaced, but not exactly, while the linear field steps

in this image are calculated from a lookup table to be evenly spaced. From the previous

section, we know that the sole use of a lookup table will result in varying rate-dependent

offsets. The accuracy of the evenly spaced field points is corrected with the same method

as the non-FORC applied fields. Extra care, however is used in programming FORC data

acquisition, which will be discussed further in the FORC experimental section 7.6.

7.4 MOKE MEASUREMENTS ON PERMALLOY

As described in the MOKE section, we can use MOKE to measure the magnetization pro-

cess in a magnetic material. The final goal for this measurement technique is to measure

the aligned multiferroic Janus fibers mentioned earlier. Following the tremendous diffi-

culties experienced with the QWP, I decided that a slow, methodical approach was wisest.

The first sample to be measured with a MOKE experiment was 200 nm thick permalloy

films. These permalloy films had in plane easy axis magnetization and a relatively large

Kerr response. The geometry of the experiment can be seen in Figure 7.13
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Figure 7.13 The original MOKE geometry for measuring NiFe thin films using the
differential detection scheme from Figure 7.1b. The optical chopper is used as a reference
for a lock-in amplifier. The various irises are in place to shape the beam profile to ensure
the cleanest wavefront possible. The first and second polarizers are both set to transmit p̂
polarized light. The two convex lenses are used to focus the beam spot and subsequently
gather the diverging beam. The electromagnet is controlled via LabVIEW software, which
sweeps the magnetic field between ±Hmax. The QWP FORCes the initial polarization
state at the detectors to be circular so that the difference between the signals of both
detectors is negligible.

Initial hysteresis loops were acquired by using a long time constant of one second on the

lock-in amplifier. The time constant essentially allows averaging for that duration before

resolving the value for output. The MOKE geometry being used falls into the LMOKE

scheme, and thus we are probing the magnetization in the plane of the thin film. Since

the thin film has a very strong easy axis in plane, due to shape anisotropy, all of the full

thin-film results were very rectangular. At this point in the experimental MOKE process,

a reader will note an X axis in units of current, rather than magnetic field. This topic is

addressed in detail in section 7.3.

Throughout this early experimentation, using differential detection, Two different brands

of detectors (Thorlabs DET36A, HINDS DET-200) were used with a different electronic
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gain associated with each one. As an extra step, before each experiment, using a variable

neutral density filter, the signal into the detector with the larger gain was attenuated to

match that of the detector with the smaller gain. After doing this process numerous times,

the problem was circumvented by simply searching for two identical detectors.
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Figure 7.14 A representation of typical MOKE using NiFe as a sample. Note the easy
axis magnetization due to the fact that we are doing LMOKE, and thus, probing the
in-plane magnetization. The levels of noise are quite significant even when the
magnetization has saturated.

MOKE was chosen as a viable magnetic measurement technique based on literature,

specifically reference [42]. In this particular journal publication, the author uses MOKE to

measure hysteresis of 200 nm wide, flat permalloy wires. After many hours of using the

optical scheme outlined in Figure 7.13 to measure the permalloy thin films, the contents

of reference [42] were revisited, and it was noticed that we were implementing the quarter

wave plate incorrectly. Rather than inducing circular polarization, the ideal use of the

QWP was to correct any reflection-induced ellipticity. This paper also argued that, rather

than cross polarizing a polarizer and analyzer, the best signal to noise ratio (SNR) would
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come from an ∼ 97% initial extinction of the reference signal. With the polarizer and

analyzer oriented such that they are almost fully cross polarized, one detector is receiving

a much larger signal than the other. The author suggests using a neutral density filter to

remove excess signal in order to balance the two detectors. The experimental design was

modified to implement this SNR maximization (Figure 7.15a) and the resulting data was

visually much higher in SNR (Figure 7.15b). At this point, a MOKE loop would take

approximately 5-10 minutes to complete, depending on the step size. For future, greater

SNR MOKE, this time would have to be reduced in order to employ averaging with the

intent of improving the SNR.

To ensure that signals were nearly equivalent, the signals from both detectors were

passed through a dual channel oscilloscope (Lecroy Waverunner 64xi). When one of the

signals was magnitudes larger than the other, it was helpful to have a visual representation

of the signal as the lock-in amplifier only had a finite signal range. Additionally, using

the math functions within the oscilloscope, it was discovered that there was a ’small’ (∼ π

9 )

phase difference between the two signals, which prevented perfect cancellation of the signal

when considering the signal has a magnitude and frequency. I was overzealous about small

things like this, and decided to ensure that these signals would fully cancel each other in

amplitude and phase. This was done by building a variable high pass filter. The relevant

experimental optical Kerr signal was modulated by an optical chopper, and therefore the

form was sinusoidal. This high pass filter would delay the phase of one of the signals

depending on the variable resistance(0-5kΩ). This eased my peace of mind, although in

future experiments, we will see that it was ultimately unnecessary, as the disruption caused

by the very slight phase difference was less important than the noise gained by putting this

circuit in-line with my signal. Thankfully, when using permalloy thin films, the SNR was

simply so high that single Kerr loops still had a relatively high SNR without the use of

additional add-ons.
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Figure 7.15 The modified MOKE geometry. The inclusion of the neutral density filter
(NDF) fundamentally changed how the QWP functions as part of the experiment. The
result is a graph possessing a visually larger SNR when compared to previous data in
Figure 7.14.

We will take a slight aside here to discuss the motivating factors that led me to cre-

ate and measure permalloy microwires using MOKE. Following the excellent success of

permalloy thin films shown above, MOKE measurements were attempted on nanofiber ag-

glomerates. As a cautious experimenter, pure CFO nanofibers were used initially, rather

than the Janus vairety, with the hope that a material that was fully magnetic would be easier

to extract signal from, rather than one that is nominally 50% magnetic [43]. Using the same

methods for our excellent SNR on permalloy, I attempted many unsuccessful CFO MOKE

runs. Noise levels were large enough that no Kerr rotation was obviously detectable. The

few successes were not reproducible and will be fully discussed in 7.4.1. These CFO were

aligned with a uniaxial field with methanol as the alignment medium. Fibers were left in

the external field until all methanol was evaporated. Compared to a thin film, there are

obvious differences in geometry. A thin film is "infinite" in the plane of the substrate, and

a thin film has negligible surface variation. An aligned nanofiber agglomerate is nominally

2-10µm in diameter and is the formed through the aggregation of many individual fibers.

Were these experiments not working because the width of these fiber agglomerates were

too small for my MOKE? Were they failing to produce a Kerr rotation because the aligned

fibers formed such a topographically diverse surface? In order to test one of these two
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potential sources of experimental failure, NiFe wires with dimensions similar to that of

aligned CFO were created.

Permalloy wires of various diameter and edge quality were created to eliminate the

suspicion that the few µm diameter was the cause of low SNR of CFO measurements. Us-

ing photolithography and physical vapor deposition NiFe wires were created and deposited

onto glass substrate. Atomic FORCe microscopy was performed on these wires to verify

the surface quality. Figure 7.16 shows optical and atomic FORCe microscopy images of

NiFe wires

Figure 7.16 Left) Dark field optical microscopy of NiFe wires created with
photolithography. Right) Atomic FORCe Microscopy (AFM) on the surface of one wire
to confirm width, height, and surface smoothness.

Glass was chosen as the substrate for the NiFe wires for the simple reason that the

nanofibers are also aligned on glass. Throughout the entire experimental process using

glass as a substrate has been a boon and a curse. Glass will transmit ∼ 90% of light

at most incident angles and even more if the specific polarization is chosen. This helps

tremendously to reduce specular light reflected from non-magnetic sources. On the other

hand, glass has two surfaces of reflection: the front pane and the back. Due to the fact

that the magnetic sample surface only occupies a small portion of the optical spot size, we

gain a relatively large reflected signal from light incident on the sample substrate. When
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considering the reflected beam of light from a magnetic material, it is helpful to consider

the column of light as many individual rays, which are originating from different surfaces.

Those originating from the glass substrate will nominally have the same polarization as the

incident light, and those originating from the magnetic material will have a polarization

state which is rotated slightly with respect to the initial state. I am not the first MOKE

researcher to encounter this particular issue [44]. The MOKE-specific equation, which

quantifies a relative Kerr rotation, adapted from reference [44], is,

ΘKerr =
∆IKerr

Isub + Imag
, (7.12)

where ΘKerr is the Kerr rotation, ∆IKerr is the total signal change from the Kerr rotation,

Isub is the intensity of light reflected from the substrate, and Imag is the intensity of light

reflected from the magnetic material. In general, we seek to minimize the Isub term, so

that the whole Kerr rotation increases. This fraction can be maximized in a few ways. The

first, and most obvious of which is the reduction of the optical spot size. By reducing the

optical spot size, the FWHM will ideally approach the area of the nanomagnet such that

there is no substrate reflection. One can also apply an antireflective coating to the sample

substrate. Lastly, one can increase ∆IKerr by applying a specific dielectric coating to a

material so that there are multiple internal reflections that serve to multiplicatively increase

the numerator of this fraction. Since this detour to NiFe wires was not the ultimate goal of

our research, the dielectric coating, while seemingly easy to use for NiFe, was not feasible

with the sample preparation used nor the inhomogeneity of the fibers. The option of AR

coatings to the sample substrate was not available in our lab, and as I have already stated

earlier, our optical spot size was at its reasonable minimum limit. For the future goal of

measuring aligned fibers, it seemed like none of these particular improvements would be

worthwhile for both the current problem of improving SNR for wires and the future goal

of measuring magnetization of aligned nanofibers. Separate from these specific MOKE-

related signal improvement techniques, it is known that the SNR of raw signal can be

improved by
√

N, where N is the number of repeated and averaged trials that have been
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processed [45]. Until now, SNR has been high enough that the shape and parameters of

MOKE data has been easily distinguishable from a single MOKE acquisition. Figure 7.17

shows the Kerr rotation of a permalloy wire. The SNR is much lower than that of the NiFe

thin films, probably due to the fraction of optical spot size (∼ 20µm FWHM) compared

to the few micron diameter of the fiber shown below. The LabVIEW code handling all of

the MOKE-related measurements, at this point, is modified to allow continuous collection

of consecutive MOKE data. This data is post-processed in Igor Pro (section A.2.1 in the

Appendix), in which data is averaged and normalized (Figure 7.17). It is apparent that SNR

is tremendously improved by a simple averaging scheme.
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Figure 7.17 Left) Kerr Rotation data taken from the wire shown on the right. The blue
data are single Kerr rotations, while the orange data are the average of the blue data. Note
the vertical axis has been normalized such that the data runs between ±1. The average
standard deviation (noise) from the individual runs is initially ∼0.183 arb units. After
averaging, the noise is reduced to ∼0.0174 arb units. This is a ∼10.5x reduction of noise.
The expected reduction was

√
82 which is ∼9.1x. Right) The actual wire from which this

data is taken. The dimensions and edge profile are comparable to a small aligned fiber
agglomerate
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After acquiring a significant amount of consistent MOKE data on the NiFe wires, I was

confident that the size of nanofiber agglomerates should not be a problem, given the qual-

ity of averaged hysteresis loops. Note that the signal quality returned to that of the NiFe

films only after averaging. Moving forward, averaging will be continuously implemented

to have the possibility of seeing relatively low-noise hysteresis loops. Even with the sig-

nificant back reflections from the glass substrate, the process of averaging multiple data

sets was able to reduce the noise to a point where noice can be easily distinguished from

internal magnetization processes. Averaging, normalizing, and noise measurements were

completed via Igor Pro procedure (section A.2 in Appendix).

7.4.1 MOKE ON CFO NANOFIBER AGGLOMERATES

When given the option to use a fully magnetic or a Janus magnetic material in a highly un-

refined magnetic measurment experiment, the careful experimenter will choose the fully

magnetic one. Compared to Janus nanofibers, which are nominally 1/2 magnetic (1:1

BTO:CFO), CFO nanofiber agglomerates are pure CFO [43]. These externally aligned

agglomerates were prepared on glass slides according to the alignment process in section

[11]. As stated earlier, the glass substrate produces back reflections from multiple surfaces,

which can comparatively drown out a Kerr signal which originates from the sample surface.

The option to prepare fibers in a transparent PVA solution was avoided, as the addition of

cured PVA would simply add another layer of reflections which could further reduce SNR.

To avoid these additional back reflections, samples were prepared in methanol and placed

into an external alignment field. While on the sample substrate, methanol would act to

facilitate alignment due to its low viscosity and vapor pressure. Post sample fabrication,

fibers were oriented with their long axis in the p̂ direction in between the magnetic poles on

the glass substrate for MOKE measurement. With the same methods outlined in the NiFe

section, MOKE acquisition of these fibers began. Compared to the NiFe wires, relatively

no Kerr rotation was detected.
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Here, the experimental MOKE geometry was once again changed. Considering that

these fibers were nominally cylindrical, and not thin film-like surfaces as seen with the NiFe

wires (Figure 7.16), the light detected in the specularly reflected beam would not contain

the same magnitude of signal as it would in a case where the law of reflection applies

(large cylinders or flat surfaces for example). Using the Mie scattering interpretation, and

some visual information regarding the surface structure of the CFO agglomerates (7.18), it

seemed likely that there would be significant Kerr rotation information in the light which

was scattered rather than specularly reflected.

Figure 7.18 AFM data taken on methanol-aligned CFO fiber agglomerates. Note the
amplitude of the topography is roughly.8 µm.

In order to have a better chance at reading a signal from large quantities of non-

specularly scattered light, instead of a single lens after the reflection from the sample, a

lens pair was placed with the intended function of collimating the scattered light (with

the first of two lenses) and then focussing the newly collimated light (with the light colli-
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mated from the first lens) on the detectors. With the addition of this significant amount of

scattered light, the linearity of the beam was low enough that it could not be easily extin-

guished between polarizer and analyzer. We return to an original use of the QWP, and now

use it to circularly polarize the signal in order to continue to use differential detection. We

had originally moved away from using the QWP to induce circular polarization in order

to really ensure the linearity of specularly reflected light, but now because of the highly

topographically diverse surface, the use of a single QWP was unable to yield linear polar-

ization. Figure 7.19 shows how the experimental geometry has changed since the previous

step.

Figure 7.19 The previous experimental geometry was once again adjusted by including
a pair of 50.8 mm lenses immediately after reflection. The purpose of which was to
collimate and focus the scattered light. The NDF was removed and the function of the
QWP was returned to enFORCing circular polarization to balance the signals between the
two photodetectors.

With the adjusted geometry shown above, the sample substrate was searched for a fiber

agglomerate that would have a large amount of scattered light. What I eventually found
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should be called a mat of aligned fibers, rather than a chain. The fiber mat and resulting data

are shown in Figure 7.20. When observing the anatomy of the reflected beam, the majority

of the reflection was scattered light. The incoming specular beam was not reflected, and

instead, seemed to be fully scattered.
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Figure 7.20 Left) Aligned nanofiber agglomerates which have formed a relatively large
island when compared to the optical spot size, which is represented by the red circle.
Composed of fibers which are 1µm in diameter, this agglomerate is much larger than we
are interested. Right) Hysteresis data for the red circled spot of this large clump. The 92
blue datum were averaged to create the red line within. Note the pinching of the hysteresis
loop at the point where current is increasing at ∼0.5 amps. This wasp-waisted shape is
often seen in CFO samples [46]

This was the first success of using MOKE from chained and aligned fibers. As the first

successful fiber measurement, we notice that there is a change in the curvature of the hys-

teresis loop at approximately 0.5 amps in the increasing field direction. It has been shown

that cobalt ferrite will display wasp waisted curvature that is dependent on the synthesis

process, specifically heating and ion transfer [47, 46]. Due to long time per run (∼10-

15min) and the sub 100 consecutive runs, the the intensity of light was hot enough to burn

a physical hole in the sample which was too deep to image with the AFM. It is likely that in

doing MOKE on this large mat of fibers, the surface melted to be a thin film-like surface or

melted briefly and re-aligned in the probing field. Regardless of the reason, this particular

run served 2 purposes: the verification of scattered light as a source of Kerr rotation, and
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motivated the need to expedite the time in which data is acquired. Repeatability of this

particular method was low due to the back reflections still dominating the reflected signal

in all cases except when the aligned fibers were a large mat.

With the newly discovered information regarding the potential to use scattered light as

a source of MOKE signal, the experimental geometry is once again adjusted. Rather than

extracting the scattered signal from the annulus surrounding the specular reflection, I took

the bold step to simply move the lens pair so that no specular light will be detected. Now,

light scattered from the cylindrical nanofibers will be collimated by the first lens, and just

like before, it is focused at the detectors. Unlike the previous geometries, however, there

are no more substrate reflections. We have unintentionally improved ΘKerr from equation

7.12. By reducing the signal reflected from the substrate (Isub), (all non-fiber reflections

will reflect in the specular direction determined by the incident angle) with the modified

geometry, the specular reflection is stopped.

Figure 7.21 The updated MOKE geometry which detects light scattered in a direction
which is not specular with respect to the incident beam.
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Compared to previous MOKE measurement geometries, this geometry will become the

most robust for studying topographically diverse Janus fiber agglomerates. This is a highly

relative term, as previous methods showed little to no consistent success. However, with in-

termittent success came new sources of experimental failure. In the context of exploratory

experimental MOKE, a failure to acquire a signal usually involves a low SNR rendering

a Kerr rotation to be indistinguishable from the noise in which it lies. In the case of this

new geometry, the low SNR would display itself as a signal fluctuation after balancing

the two differential detectors. Ideally, when the detectors have been balanced to zero, the

maximum range of the Lock-in-amplifier can be adjusted to view small changes of signal

around 0. However, the particular issue was that the random noise amplitudes were higher

than frequently observed Kerr rotations. This problem would appear consistently but with

no apparent pattern, as it would be low noise for some fibers, and large noise amplitudes

for others with no apparent dependance on size or length. As these noise issues continued

to present themselves, it was suggested to me by colleagues to use the PVA-suspended

CFO samples. The alignment quality was higher, and the average diameter of aligned fiber

agglomerates was smaller. The specifics of the sample preparation can be seen in refer-

ence [11]. With the change to PVA, we were seeing an increase in narrower/longer fibers

(Figure 2.5), rather than large islands (Figure 7.20). As a reminder, using these samples

for MOKE was initially an issue because the PVA acted as yet another specular surface

which would drown the specular signal using the previous MOKE geometry (Figure 7.19).

With the new, purely scattered light geometry, the only signal added from the cured PVA

solution would just be small bubbles which have been trapped in solution. Compared to

a specular signal, the signal contribution from the bubbles will be negligible. As there

was now no detriment to using PVA-coated fibers, we began MOKE using these particular

samples. Fibers are oriented parallel to the applied magnetic field (p̂), and a large field of

scattered light is focused on the pair of detectors, being careful to balance both detectors.

As a good omen, the first CFO MOKE run in the scattered geometry was a success (Figure
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7.22). When attempting to balance the two signal inputs from the differential detectors, the

PVA suspended fibers showed a lower noise floor when compared to non-suspended fibers.

A likely reason is that fibers simply aligned and placed on glass have very little FORCe

keeping them anchored to the substrate. It is likely that the uniaxial magnetic field being

swept induced small oscillations or small physical rotations of isolated fibers sitting on the

glass. This motion could potentially propagate to the signal detection and produce large

noise amplitudes which have originated from mechanical motion of the fibers.
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Figure 7.22 The first set of data acquired from a pure scattered MOKE geometry. Fibers
are oriented parallel to the field direction. The large quantity of dots in the background are
each of the individual runs which make up the blue averaged line. Unfortunately for this
particular bit of time, the cooling system for the magnet was being repaired, and the range
of currents was restricted between ±2.5amps which is the likely preventing saturation of
the magnetization of the fibers.

The repeatability of measurements of the new MOKE geometry with pva-suspended

fibers was very high. Unfortunately, SNR remained average at best. In order to improve

SNR at this point, I considered the question, "how do I acquire more scattered light?".

Noting the cylindrical geometry of the individual fibers and the mechanism in which Mie
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scattering from cylindrical surfaces occurs, it was clear that a larger signal could be ac-

quired by rotating the aligned agglomerates perpendicular to the direction of the external

magnetic field (ŝ). Figure 7.23 shows how the scattered rays will differ in direction based

on the angle of the cylinder.

Figure 7.23 Following the geometry outlined in section 3.6.2, light scattering from a
non-normal incidence will produce a cone of reflected rays. The intensity of light varies at
different azimuthal angles with respect to the long axis of the cylinder, but will travel
according to the law of reflection. Combining this conical scattering view with the
geometry shown in Figure 7.21, it is clear that at a 45◦ incident angle, much of the
scattered light will indeed be in-line with the specularly reflected substrate reflections. A
rotation of the entire substrate so that the fibers are now oriented in the ŝ direction allows
the scattered light to exist in the p̂ plane, theoretically making a larger signal available for
detection.

This simple rotation of the sample improved the SNR of the overall signal (Figure

7.24). In addition to the obvious benefit of lower noise, the integration time per data point

was also deceased. With the improvement of SNR per individual run, less preprocessesing

noise reduction was needed, so that overall speed could be improved, which would help

to avoid noise contributions from heating (Figure 7.29). With the reduction in acquisition

time, and the improved SNR for single runs, we benefit even more from the automatic con-

tinous acquisition of MOKE data via LabVIEW. Now, since the averaging is so critical,

we begin to consider number of averages needed as a single entity since they will end up

representing a single datum. Figure 7.24 shows the 100 automated average runs that con-

tributed to the MOKE for ŝ oriented fiber agglomerates. Although we now acquire data
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with a higher SNR, we are also fundamentally measuring a different magnetization mech-

anism. Considering shape anisotropy, which was discussed earlier, the easy axis should

nominially be along the long axis of a cylindrical wire, while the hard axis is in any radial

direction normal to the surface of the cylinder. We are no longer measuring the presumed

easy axis magnetization, but we are now able to acquire much higher SNR. Keep in mind,

that the fibers measured are not perfectly aligned at the scale of an individual fiber, and it

is likely that every constituent fiber has a nonzero angle with the intended alignment direc-

tion, yielding a mixture of easy and hard axis magnetization. Due to this fact, it is unlikely

that the easy and hard axis magnetization can be fully separated.
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Figure 7.24 The first set of data acquired using continuous MOKE data acquisition of
fibers oriented perpendicular to the applied magnetic field. The blue line is constructed
from the average of 100 orange runs. Notice that the SNR is low enough that we are able
to see the middle of the graph even through all of the relatively noisy individual runs.
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7.4.2 MOKE MEASUREMENTS ON JANUS FIBERS

With a much more robust method for acquiring magnetization data on aligned nanofiber

agglomerates, the MOKE experimental design is finally prepared for Janus fibers. Until

now the use of Janus fibers was avoided because, by definition, they are nominally half as

magnetic as the pure CFO fibers. This was confirmed by our collaborators who synthesized

the fibers [43] as well as within our own lab via vibrating sample magnetometry, where we

observed that the saturation magnetization of the pure cobalt ferrite is ∼2x that of an equal

volume of Janus fibers. Fortunately the experiment did not care about my reluctance to

measure these fibers because initial results seemed promising. Figure 7.25 shows the first

successful magnetization curve on an aligned Janus fiber agglomerate.
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Figure 7.25 Janus fibers agglomerate oriented in the ŝ direction. This particular graph
was created by averaging 300 consecutive runs.

From this initial curve, many more Janus fibers were measured. As the experiment

was fine-tuned via more careful placement of optics, blocking of back reflections, and

measuring more well-aligned fiber agglomerates, one of the most interesting aspects of
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measuring Janus fiber agglomerates was the appearance of non-symmetric features in the

magnetization curves. These features show up as sharp dips or changes in curvature at

various field values. Without averaging, these could potentially be written off as noise. The

repetition of these behaviors in agglomerates of different shapes and sizes was an indication

that they were not, in fact, noise, but were a real magnetization processes. These effects

can be seen in the various images in Figure 7.27. The detection of these irregularities and

the result of averaging can be seen in 7.26.
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Figure 7.26 The top image shows a total of 100 MOKE runs, while the bottom graph
shows the result of averaging those individual runs. The vertical dashed lines draw the eye
to the assymmetric features that are commonly seen when measuring the magnetization
curves on aligned Janus agglomerates.

We can see in the top image of Figure 7.26 that without significant averaging the noise

amplitude of a single run would have a magnitude as large as the large dip in magneti-

zation seen between 1 and 2 kOe. Magnetization curves from Janus fiber agglomerates

show a variety of features, including the least interesting feature of a smooth, featureless

magnetization curve.
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Figure 7.27 First half of Janus magnetization curves are results of averaging between
100-400 consecutive runs. Each curve is taken from a different aligned Janus fiber
agglomerate. A variety of asymmetric features can be seen throughout this collection of
magnetization curves.
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Figure 7.28 Second half of Janus magnetization curves are results of averaging between
100-400 consecutive runs. Each curve is taken from a different aligned Janus fiber
agglomerate. A variety of asymmetric features can be seen throughout this collection of
magnetization curves.

The data shown above were collected over many months. Before switching to the

oscilloscope for data collection (section 7.3), each single run could take up to a full minute,

and if that is repeated 100-400x, a full set of MOKE data can take up to 7 hours to build. In

order to create a normalized set of MOKE data, the Kerr rotation of each individual MOKE

run must be recorded (section A.2.1 in Appendix). This is carried out with a homemade

Igor Pro function, and in certain data sets we see that the Kerr rotation will be decrease

over the duration of a multiple hour MOKE run. We see this effect in Figure 7.29.
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Figure 7.29 The Kerr rotations taken from the Igor Pro normalizing program plotted
against time. There are 400 data points here collected over approximately 5 hours. The fit
type is an exponential decay.

Even with the initial MOKE measurements on aligned fiber agglomerates, we saw that

excessive power would result in the destruction of the aligned fibers. Unlike the highly

reflective permalloy where the incident power was not really considered as a limiting pa-

rameter, there was a definite hard limit on the the power used for measuring aligned fiber

agglomerates. This was easily identifiable as there would be an apparent hole where there

was once an agglomerate. Because power (W) and intensity (W/m2) have different dimen-

sions, an equivalent power would impart more energy to a larger fiber than a smaller one.

Rather than risk burning the fibers, we determine how/if laser power is related incident

power. It is found in literature [42, 45] that SNR scales positively with increasing power.

This was verified in Figure 7.30.
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Figure 7.30 The improvement of SNR with the increase of incident power. SNR was
taken from a set of 10 average MOKE runs at each different incident power.

The "signal" in "signal" in the above image is taken as the Kerr rotation, while the

"noise" is simply the standard deviation in areas where the signal saturates, where it is

nominally unchanging. We see an exponential-like dependence on power, suggesting that

there is a limit to how much one can improve SNR by increasing the power. Fortunately

for us, we don’t have to wonder about when further power increase will no longer improve

SNR, since we have the hard limit of sample destruction. Typically, measurements are

taken with a power of ∼9-12mW.

7.5 ANALYSIS OF SCATTERED MOKE

As shown in Figures 7.27 and 7.28 , we observe field-dependent variations in the individual

hysteresis loops from different agglomerates. These features in the averaged magnetiza-

tion loops presumably offer insight into the micromagnetic properties of these structures

and ultimately the dynamics of the chaining process that creates them, which is an obvious

potential source of variability. In an external field, our fibers are seen to assemble both

end-to-end and laterally, depending on the distribution of fiber lengths and the concentra-

tion of fibers in the PVA solution [11]. Finally, the individual fiber properties depend on

the Janus electrospinning process, which is known to produce variations in wt.% of the
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composite materials between individual Janus fibers [43]. To compare the magnetic behav-

ior of the CFO within the Janus fibers to other common CFO geometries, Table 1 shows

average and standard deviations of the coercive field (Hc) and Remanent Field (R) from

our measurements, compared with magnetization data found in the literature. The values

used in Table 1, are acquired from 14 sets of averaged hysteresis curves, each taken from

ScMOKE measurements on a different fiber agglomerate. Figure 7.27 shows the hystere-

sis loops used to calculate the ScMOKE values in Table 1, while Figure 7.31b shows the

VSM data representing the entire suspension of aligned agglomerates. Magnetic properties

measured with the VSM differ from MOKE for thick magnetic samples due to the fact that

VSM probes the entire magnetic volume of all agglomerates lying on the sample substrate,

while MOKE only measures magnetization from within skin depth on the order of 10 nm.

The images in Figures 7.31 and 7.27 serve to illuminate the differences between a single

surface measurement of an aligned agglomerate using ScMOKE when compared to a bulk

volume measurement of VSM.
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Figure 7.31 a) A single averaged magnetization curve taken via ScMOKE with fibers
oriented parallel to the substrate surface, and pointed along the ŝ direction with respect to
the incident plane. b) VSM data taken for an entire sample of fiber agglomerates aligned
perpendicularly to the magnetic field. c) Same as a) except the agglomerate is pointed
along the p̂ direction with respect to the incident plane. Table 7.1 shows that the coercive
field for single fiber agglomerates is approximately 70% larger than the average of an
entire agglomerate-covered substrate taken via VSM. Panel c) shows a slightly more
rectangular magnetization curve, suggesting a possible easy axis along the fibers’ long
axis.
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ScMOKE fibers VSM fibers Solgel NPs [48] Wet Chem NPs [49]
Hc (kOe) 0.85± 0.2 0.495 0.65 0.2-0.6

R (%) 0.5± 0.12 0.46 0.4 0.4

Table 7.1 Comparison of averaged hysteresis data obtained from ScMOKE and VSM
measurements of CFO-containing Janus fibers with representative literature results for
Solgel precursor synthesized CFO nanoparticles and wet-chemical mixing prepared
nanoparticles. Referenced values are approximated by Figures found in corresponding
literature. Coercivities for ScMOKE and VSM measurements are determined by fitting
each curve with a hyperbolic arctangent and extracting the field value where the fit line
passes through zero magnetization (y-axis).

Hysteresis data from CFO thin films along the easy and hard crystallographic directions

show sharp transitions along the easy axis with little to no magnetic coercivity along the

hard axis [50]. This is unsurprising as the magnetization transition along an easy axis is

facilitated by rapidly switching domain wall motion, while magnetization along a hard axis

relies on domain rotation. Under the influence of a slowly changing magnetic field, domain

rotation yields a slow transition from one saturation magnetization to the other, while do-

main wall motion is typically a sharp transition, associated with the pinning and unpinning

of many domains simultaneously. Both ScMOKE and VSM from perpendicularly oriented

agglomerates, Figures 7.31a and 7.31b respectively, show a smoother transition that sug-

gests a mixed easy/hard axis state. We also see similar behavior from an agglomerate

measured along its shape anisotropy-determined easy axis in Figure 7.31c. The VSM-

determined R∼.46 and Hc of 0.495 kOe from aligned fiber aggregates are shown in Figure

7.31b. Table 7.1 compares the fiber agglomerate results with solgel precursor-created CFO

nanoparticles[48] and nanoparticles formed with wet chemical mixing[49]. The data show

large variations in magnetic properties depending on the CFO synthesis procedure, includ-

ing temperature(s), geometry, and size.

Figure 7.27 shows several distinct and unique loop shapes acquired via ScMOKE on

different fiber agglomerates. There are several different effects that could cause these vari-

ations, including domain wall reorientation and propagation, the mixing of Polar and Lon-
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gitudinal MOKE geometries, relative proximity and periodicity of aligned fibers within an

agglomerate, and the purity of CFO phase.

One of these effects is domain wall reorientation caused by different local energy min-

ima. It is known that a smooth hysteresis loop will be observed if magnetic moments

undergo coherent rotation following the direction of the external field [21]. Discontinuous

changes in the moment at a specific field arise from motion and/or pinning/release of do-

main walls. Since we apply the external magnetic field parallel to a hard axis in terms of the

shape anisotropy of individual fibers, we might expect purely coherent rotation. However,

it is still possible for local domain walls to nucleate and jump across the diameter fiber, for

example in fibers that are aligned such that the field is at an angle to both easy and hard

axes [21]. Domain wall pinning can also give rise to sharp magnetization discontinuities,

which have been observed with MOKE, but typically in mono-few layer thick samples

[51]. Complex domain walls have also been observed in “thin” cylindrical magnetic wires,

including transverse, vortex, and Bloch walls. Depending on the type of domain wall

formed, the magnetization vector on the sample surface rotates through different orthog-

onal directions as the domain wall propagates across the surface [52], a phenomenon that

has been seen in both experiments on and simulations of sub-100 nm diameter cylindrical

magnetic wires [53]. The diameter of the Janus fibers are an order of magnitude larger, and

the agglomerates are not isolated wires. Without knowing the micromagnetics of the Janus

agglomerate, complex domain wall motion cannot be ruled out. SMOKE (Surface MOKE)

measurements taken on crystallographically frustrated surfaces have been shown to exhibit

similar loop behavior at certain vicinal angles with respect to the crystal axis. Notably

we see very similar magnetization curves to Figure 7.27d) for Fe thin films grown on Co

substrates with a 7◦ vicinal angle [54]. We could be seeing similar effects at the BTO-CFO

interface if there is a significant lattice mismatch, leading to crystallographic frustration.
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H H

a) b)

Figure 7.32 a) shows a representation of our experimental geometry from the top view
(along the ŝ direction). the arrow labelled "H" shows the direction of the applied magnetic
field generated by the poles. The highlighted portion of a) shows the portion of the
circular cross section that would qualify as LMOKE, while b) shows the portion of the
cross section that qualifies as PMOKE. At the non-specular Mie scattering limit, the light
scattered from a cylinder will contain signal from all illuminated parts of the cylinder
agglomerate.

Another possibility to consider is the mixing of Polar (PMOKE) and Longitudinal

(LMOKE) MOKE signals as a potential source of hysteresis loops with minor-loop be-

havior. When defining LMOKE and PMOKE, the easiest visualization is by using a thin

film geometry. MOKE variations are differentiated by the direction of the applied mag-

netic field with respect to the plane of incidence. Light incident on the surface of a 2D or

quasi-2D sample will produce a coherent reflection from a planar surface, and qualify as

a single orthogonal MOKE geometry. The mixing of P and L MOKE can be linked to the

ŝ-orientation of the fibers. Light incident at ∼ 45◦ will strike the front surface of our fiber

agglomerate, as expected (Figure 7.32a) but will also strike the surface of the fiber which

faces a magnetic pole (Figure 7.32b). During any given experiment there is an illuminated

surface that lies parallel to the magnetic field (LMOKE), and one which is perpendicular to

the magnetic field (PMOKE). The difference in the magnitude of the demagnetizing field

at the field-parallel surface (Figure 7.32a) and the pole-facing surface (Figure 7.32b) could

yield a magnetization curve which will be a superposition of two different magnetization

processes.
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Previous research with diffraction MOKE (DMOKE) show a wide variety of hystere-

sis loop shapes that are similar to what we observe in ScMOKE. DMOKE is sensitive to

motion of an individual magnetization vector in a patterned element that is the same in

all elements of an array where each element has the same spatial separation, similar to

diffracted light from a grating [55]. Several features of our magnetization curves appear

to match those seen across the different orders of magneto-optical diffraction. However,

we have a rough agglomeration of nano-sized magnetic fibers and not a well-ordered array

of elements [56][57]. The most obvious similarity between ScMOKE and DMOKE is that

both detect off-specular signals, i.e., light scattered from a material. In the ScMOKE case

many small fiber “building blocks” are assembled into a larger agglomerate, all of which

are scattering light. It is possible that they exhibit common magnetic reversal features

that occur at similar fields, and thus show similar behavior in scattered light to observa-

tions of periodic elements with DMOKE. A DMOKE experiment yields multiple orders

of detectable signal, which of course are not observed in ScMOKE, but an agglomerate

of multiple fibers may cause an interference of signals from multiple fibers undergoing

similar magnetic behavior at the same external field. We do not, however, observe distinct

intensity maxima as would be expected in a DMOKE orientation.

Finally, cobalt ferrite has long been known to show unique magnetization curvature

[46], most commonly a “pinching” of the hysteresis loop about the zero field point. We

observe a similar effect in various graphs in Figures 7.27 and 7.28. Until recently, the spe-

cific reason why, and to what degree, the curvature of CFO magnetization would change

was unknown [47]. It has been discovered that the curvature of CFO samples is highly

dependent on the sample preparation method. The investigation by Zhang et al. studied

the origin of CFO pinching by creating various pellets of CFO and controlling the heating

time and temperature, as well as the precipitation time of the CFO. After observing var-

ious changes in curvature under different synthesis conditions, the group attributed these

changes to the mixing of phases between Co and Fe ions. Although the electrospinning
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process is inherently different, it is possible that there is a similar phase mixing between

the two ferroic phases of BTO and CFO.

7.6 FORC

In theory, measuring raw FORC signal is just a natural extension of a magnetization curve

measurment. Rather than taking symmetric magnetization curves, FORC data is built from

assymetric magnetization curves that sweep between a fixed maximum field, Hmax, and a

changing minimum "reversal field", Hri . After completing a single magnetization curve

which ends at an arbitrary reversal value Hri , the next reversal value will be a value Hri+1 ,

following the relationship

Hri−Hri+1 = ∆Hr, (7.13)

where ∆Hr is a constant. Thus each reversal value is equally spaced from the previous

value. Because we have developed MOKE into a powerful tool for measuring magnetiza-

tion of aligned fiber agglomerates, we seek to adapt it for FORC data acquisition. Modify-

ing and analyzing FORC data from our last orientation of ScMOKE requires little physical

geometrical changes, but requires a large amount of modifications in automation and anal-

ysis. A typical FORC data set requires 100-150 reversals, and MOKE wants at least 100

averages per reversal to reduce noise to a level at which non-noise magnetization features

can be observed. In order to facilitate ScMOKE FORC, we first need to create a proper

applied field with reversals. A consideration that must be made is the way in which data

is acquired and processed. All is acquired via continuous triggering of 10 sec windows

within the oscilloscope. This eliminates the ability to simply feed our MOKE program a

set of field inputs which look like Figure 7.12 due to the fact that ∼100 reversals would

take at least 1000 sec (10s·100revs), which is much larger than the available 10sec window.

Instead, each reversal is treated as an independent MOKE run which is then run the appro-

priate number of times to build a sufficient average (typically 100-200) before moving on
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to the next reversal field. The next issue revolves around magnetic viscosity in general. We

have sought to eliminate the dependence of field value on the magnetic rise time by switch-

ing it to an in-situ field measurement. We must now confirm that there is no dependence of

the Kerr rotation as a function of rate. This will have direct consequence on the LabVIEW

field control. If there is no dependence, the parameters needed are simply Hr, Hmax and

nmax (number of steps). Where we use the combination of these three to calculate the step

size of the applied field ∆Ha,

Hmax−Hr

nmax
= ∆Ha. (7.14)

On the other hand, if it is determined that the Kerr rotation is rate dependent, we must

modify the steps taken to occur at a fixed rate (∆Hamax). We fix the rate by the very first,

most outer, reversal curve. For subsequent reversals, we use ∆Hamax to calculate a new

number of steps, n′, needed to reach each new Hri from Hmax, according to

∆Hamax =
Hmax−Hrmin

nmax
(7.15)

n′ =
(Hmax−Hri)

∆Hamax

. (7.16)

While mathematically this is not difficult to grasp, the implementation will require that

the other parts of the 10 second window to be filled with idling rather than field ramping.

To test whether or not we need to implement the more complicated approach to the applied

field steps, MOKE data is acquired for the variety of steps (Figure 7.33).
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Figure 7.33 The image on the left shows the different rates of applied field for the
MOKE results on the right.The right image shows the MOKE taken from the same
aligned fiber agglomerate with each of the rates from the left represented.

From the right image above, we see some bulging of the MOKE data around 0 applied

field in both directions. We also see, in the left image, that each of the steps taken has the

predicted exponential behavior, but the visibility of this effect is minimized with 50 or 100

steps. While the bulging effect might be minor at different rates, this is the type of data

that might appear in a FORC density plot as a result of our eventual FORC analysis. We

employ the previously mentioned "fixed rate" approach to create a set of reversal curves

which take the form in Figure 7.34
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Figure 7.34 Each of the two images uses two different approaches to building field steps
for FORC. The top image neglects rate-based effects, while the image on the bottom
attempts to minimize such effects by ensuring that each reversal nominally has the same
rate of change of field with respect to time. Looking closely, unfortunately this is not fully
consistent at the smallest (least negative) reversal, when compared to the largest reversal
at the bottom of the bottom image. Comparatively, though, we see notable improvement
from the rates in the top image.

Implementing the methods from equation 7.16, we are able to build a set of reversal

curves with constant ramp rate as shown in the right image of Figure 7.34. Similar to

MOKE, now that we have a "correct" set of field values, we can continue from preparation

steps to raw data acquisition. FORC density plots typically require between 75-150 rever-
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sals [58], and although steps have been taken to improve the speed of data acquisition, it

must still be a consideration. We have restricted a single MOKE curve to fit within a 10 sec

window in the oscilloscope, but we base that on a successful trigger of the oscilloscope. If

the trigger is not reset at the point the next FORC curve starts, the entire next 10 sec run

will be wasted. To avoid this particular situation, an additional 2 sec wait time is added

after each MOKE run, to allow the trigger to reset. While this does not seem like much

of an addition, we must remember that the duration of a full FORC run can be calculated

symbolically:

TFORC = ((tosci + ttrig) ·Nruns) ·Nrev, (7.17)

where tosci is the size of the window in the oscilloscope (typically 10 sec), ttrig is the

additional time allowed for the trigger to reset (typically 2 sec), Nruns is the number of

consecutive runs per reversal needed to build an average with "low enough" noise, and the

Nrev is the number of reversals (up to 150) needed to create a high enough resolution FORC

curve. If we neglect the Nrev term, the total time is just the time for a single MOKE run,

which with typical parameters is about 40 min. The additional term, with the possibility

of being as large as 150, would increase this 40 minute run to 4 days. Over this relatively

long period of time, it is important to keep the laser power low enough as to not induce

a slow heating and decomposition of magnetic effects, but high enough to get the optimal

single-run SNR for future analysis. Initial FORC data is shown in Figure 7.35
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Figure 7.35 Initial FORC data with 20 reversals, which was used to test the different
automation functions used in data preparation: acquisition, triggering, and normalizing.
Field data is scaled by a constant factor. At the time of acquisition, the longitudinal Gauss
probe was broken, and an axial probe at an arbitrary angle was implemented for the
purposes of continuation of research. Only the most outer full hysteresis loop is plotted, as
each of these minor reversals follow the same decreasing field path from the max field
value.

The graph above shows an initial set of FORC data using the oscilloscope to monitor

both the field and the Kerr rotation. Compared with a single MOKE run, the relatively

large amount of data is processed with new automation programs in Igor Pro (section A.2

in Appendix). The data taken above did not implement the constant rate modifications

to the field steps, as the longitudinal Gauss probe was out of commission, and accuracy

measurements like that were not being considered. However, this served as a proof of

concept that FORC data acquisition could be automated and subsequently processed with

a series of useful functions in Igor Pro. Shortly after the data in Figure 7.35 (∼1 month),

was measured, a new longitudinal Gauss probe arrived that exhibited a few quirks. The

first, 25 Oe minimum step size, has been discussed above in section 7.3, while the other

105



www.manaraa.com

two were discovered while implementing the new automated FORC with this new Gauss

probe. The first "new" error was a triggering delay, which happened infrequently, and

without an apparent pattern. The next was seemingly an error with the probe, in which the

output would discretely change the rate of field ramping, which would cause the field to

not reach saturation in the given oscilloscope window. Both of these can be seen Figure

7.36.
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Figure 7.36 The bottom image shows a correctly triggered field sweep. The first image
on the left shows a delayed/missed trigger. The Figure on the right shows erratic strange
behavior with the probe. Both of the erroneous field sweeps will result in unreliable
MOKE data.

Due to these unreliable field data, the corresponding MOKE data also could not be

trusted, and would be removed from the total set of FORC curves. While this could be

done by hand, there were often ∼10,000 files to look through, and manually detecting
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small delays in triggering could leave room for error. A functional procedure was devel-

oped (section A.3.2 in Appendix), which would find the average minimum and maximum

value for each field data set an remove the field and corresponding MOKE data if it ap-

peared to be beyond a certain threshold when compared to previous consecutive runs. Ad-

ditionally, identifying the minimum average value of the field would assist in separating

MOKE data based on the reversal field value, Hr. The function would then proceed to

remove "rotten" field and MOKE data from the larger pool of data before grouping and

averaging of individual reversals was completed. Figure 7.37 shows an example of how

the vetting procedure identifies erroneous field data, and Figure 7.38 shows the resulting

normalized and averaged reversal curves.
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Figure 7.37 The top image shows a good field reversal and the ranges where the min and
max field values are identified. For all reversals, the max field value will be the same. The
min field value will decrease in a stepwise fashion after the set number of averages have
been completed. The min values should correspond to the pre-determined Hr values. The
sharp vertical lines in the bottom image represent the individual runs which have exhibited
one of the errors from Figure 7.36. If a trigger is missed or delayed, both the min and max
values will be incorrect, while if the "strange rate change" happens, we will see a spike in
the max field value, as it will not reach the saturation value in the trigger duration.
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Figure 7.38 Implementing the error-finding Igor Pro procedures, we are able to pass
8000 individual curves through a series of procedures which yield a normalized set of 80
FORC curves free from erroneous data. Although this data is free of detection issues, the
rates of the magnetic fields had not been equalized at the time of data acquisition.

When normalizing a set of FORC data, we must be a bit clever about how we choose to

do the normalization. In a normal MOKE setting, all of the curves are normalized by taking

the maximum and minimum values of the curve and scaling them to ±1 respectively. In

the case of a FORC curve, although the maximum value is consistent, the minimum value

changes for each FORC reversal (Figure 7.38). Thus, rather than insisting, via mathemat-

ics, that the maximum and minimum values are rescaled to ±1, we use the knowledge of

magnetic hysteresis, and note that every reversal reaches the same max field value. Because

the history, as far as the fiber is concerned, shows that the magnetization has saturated, it

will follow the same magnetic path from Hmax to Hr for all different reversal field values.

This is shown in Figure 7.39 with a selection of full loops from the same data set as 7.38.
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With this knowledge, the maximum value for normalization is the maximum Kerr rotation

associated with Hmax while the minimum value for normalization will be the value of the

Kerr rotation of the outermost reversal curve at the specific Hr. The outermost curve is nor-

malized to the expected ±1, while all minor reversals are normalized to the corresponding

point within the larger curve based on the value of the Kerr rotation following the magnetic

field from Hmax to Hr for each reversal.
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Figure 7.39 Using the same data as Figure 7.38, we see that the non-normalized FORC
reversals will all follow what appears to be the same reversal path because they all reach
the same saturation field value.

The data above are technically the type of data we need to pursue further FORC anal-

ysis but the random noise is far too high to perform adequate derivative analysis. At this

point we employ two different noise attenuation tactics. The first is a noise reduction within

the oscilloscope itself [59]. The oscilloscope has an option to improve resolution of a noisy
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signal by means of bandwidth reduction. In the particular case of future data, we employ

the resolution enhancement to reduce the bandwidth of our signal by a factor of 8. The

second layer of smoothing is employed within our Igor Pro analysis (section A.3.5 in the

Appendix). This next type of noise reduction uses the LOESS (Locally weighted smooth-

ing) algorithm to interpolate a smoothed function at each point based on a user provided

number of neighboring points which are weighted based on proximity to the center point

being investigated. LOESS smoothing is especially useful when a set of data is both noisy

and has an intrinsic curvature. The smoothing process will result in a set of data with lower

standard deviation while preserving the interesting curvature of the data (Figure 7.41).
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Figure 7.40 LOESS smoothing applied to the same set of data with different smoothing
factors. We judge the quality of smoothing based on the difference between the original
data and the smoothed data. The distribution of data is largely Gaussian in the first image,
while the data on the right, which is over-smoothed, shows various peaks and valleys in
the difference, suggesting that certain features have been removed via smoothing.

With the addition of these two noise reduction techniques and the modified, constant

rate, field steps, we attempt a FORC data collection with 150 reversals.
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Figure 7.41 Using the bandwidth reduction from the oscilloscope, Igor Pro-implemented
LOESS smoothing, and rate fixing, we acquire our first low-noise set of FORC loops with
ScMOKE. Although the reversal spacing corresponds to 150 reversals, we only show the
first 135 here. Beyond reversal 135, and even before that, as we will see in Figure 7.52,
there is a point where the magnetization process becomes fully reversible. Once we are
beyond this point, the FORC analysis will never reveal any interesting information.

A few interesting insights from this data. First, we notice that the data is not running

between±1 on the Kerr rotation axis. When looking closely at the full loops, it appears that

the largest outer loop does not fully describe the demagnetization process of all subsequent

minor loops. This particular effect was undetectable in previous runs, such as Figure 7.38,

where SNR was too low to detect these subtle effects. This may be due to minor loop

behavior, lack of measurement precision, over smoothing, or some other effect. The truth

is that although the minor loop rotations were executed as expected, the path from Hmax

to Hr differed from one reversal to the next. In Figure, 7.42, we see that as the reversals

progress, the demagnetization path changes very slightly between reversals. As a result

of this apparent effect, we choose to simply offset the curves so that each Kerr rotation at

Hmax is aligned with all other curves.
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Figure 7.42 The legend indicates which reversals are plotted. The area which has been
expanded shows an example of how the field path from Hmax to Hr is not consistent
between consecutive reversals.

While this may be concerning for future analysis, we are only interested in the slope of

these data, rather than the raw values of magnetization. This unexpected diversion from a

normal path was verified to be a real effect with a second FORC trial, taken to 53 reversals,

rather than the full 150, with 200 averages per reversal. The next interesting piece of

information from Figure 7.41 is the successful linear spacing of the reversal field values

(Figure 7.43). Using a lookup table made with ∼3 sec between points, we selected only a

final current value which would yield linearly spaced reversal fields. The number of steps

between Hmax and any Hr was calculated by the LabVIEW program to ensure constant

rates between reversal fields, as we have already shown in Figure 7.34, by implementing

the Equation 7.16 into our LabVIEW program.
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Figure 7.43 Reversal field values for each of the 135/150 reversals. There is minor
deviation from the linear fit, yielding ∼50 Oe spacing per reversal.

Finally, I will save the most important and most motivated point for discussion here.

The choice to pursue FORC as a measurement technique was motivated by the various

persisting changes in curvature that can be seen in many of the Janus hysteresis loops in

Figures 7.27 or 7.28. Originally, we suspected that these curvature changes were real mag-

netization effects, due to their persistence between consecutive runs and multiple averages.

FORC measurements specifically investigate these types of changes in curvature as a func-

tion of reversal field, yielding information regarding interactions between a multi particle

system. Because our Janus fiber agglomerates are a multi-fiber system, we expect some

sort of reversal dependent effect. Rather than viewing all of the data in a hysteresis loop

with minor loops within, which can be difficult to visually distinguish, we identify the

individual reversals where interesting behavior occurs and stack them vertically (7.44).
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Figure 7.44 Reversals 11 through 69. The circled areas show relatively sharp deviations
in an otherwise smooth magnetization process. The larger circled area (reversals 11-36)
persists through many reversals and gradually becomes a smooth magnetization process.
The smaller area begins gradually at reversal 38, persists, and abruptly disappears at
reversal 51.

This type of feature is highly motivating for the FORC analysis. A final FORC density

plot is built by executing ∂ 2M
∂Ha∂Hr

. With data that promises an interesting set of derivatives,

we now focus on taking these derivatives. With our data being nominally smooth, we look

to the definition of a derivative. A derivative is nominally just the slope at the point being

differentiated. Igor Pro software has a built in differentiate function that will take the slope

between adjacent points in order to find a derivative, but this is very susceptible to noise

and fluctuations in data amplitude. Rather than the in-built ’differentiate’ function, we find

the slope at the point of interest in a way that is more resistant to noise. We allow the user
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to pick a symmetric range about the point of interest and apply a linear fit to that range of

points. Based on the indexed proximity of contributing points, we assign a Gaussian weight

to each point. A basic diagram of this can be seen in Figure 7.45, and the corresponding

Igor Pro procedure can be found in the Appendix (section A.4.1).
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Figure 7.45 An example of a differentiation using a custom Igor Pro procedure
(Appendix section A.4.1). The large graph shows the full reversal from Hr to Hmax, while
the inset shows the subset of points in which the differentiation is taking place. In the
inset, we see the range of points contributing to the fit, with the middle point as the point
physically being differentiated. Overlaid above is the weighting function used. The
farthest point is given a 10% weight, and the other points weight are calculated based on
that. If we want a sharper weighting function, we simply reduce the contribution of the
furthest point. Each slope value is taken for every point for each reversal and saved as a
new piece of data.

Similar to the LOESS smoothing process, each derivative is checked by integration and

compared to the initial data. A "good" derivative is one with a Gaussian-like distribution
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of values for the difference between integrated and original data. Like the LOESS data, a

larger contribution of points will effectively over-smooth the integral, resulting in a loss of

information regarding the subtly changing curvature of the data. From the process shown

in Figure 7.45, we build a whole new set of data of differentiated reversal curves. At

this point, before taking the next derivative, we must once again fuss over the state of

the X axis. We know that the next step is a derivative of these slope data with respect

to other reversal curves for each point Ha. In order to do this with the same method as

the first derivative, we must have slope values at every applied field value, or, as I have

done, insist on a fixed number of field step points and interpolate slope values for these

points. Because of the way we have taken the first derivative, the differentiated function

is smoothly changing and has no discontinuous edges. The reversal portion of the data

contains up to∼4400 data points for the largest reversal, and as few as∼1000 points for the

smallest reversal. We have started with such a large density of points so we can eventually

reduce our number of points while still being confident in the accurate representation of

our data. To accomplish this uniformity of field spacing, we insist on a desired number

of final points, and, using Hmax and the largest Hr, we build an array with these ideal

field steps. For each differentiated value, the value of the derivative is interpolated to the

desired field value such that we will have a singular shared field axis, rather than a field axis

corresponding to each reversal, with minor differences in field steps. Figure 7.46 shows a

mass of differentiated reversals with equivalent field steps which have been interpolated

from each of the individual reversal’s corresponding field data. One will notice in the

Figure that there are long horizontal sections of data with unchanging slopes. This is done

to equalize the total number of points between reversals. We simply extend the first value

of the slope to Hrmin for each reversal as suggested by previously explored FORC analysis

techniques [60].
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Figure 7.46 The top graph shows all 135 derivatives as a function of the new uniformly
interpolated field spacing. The particular field spacing above is created by insisting that
there should be 2405 points between Hrmin and Hmax. The bottom graph shows a subset of
data from the highlighted area in the top graph. Using linear interpolation, all reversals
now share a uniforml spaced field axis.

This step is important for two reasons. The first is that we want to facilitate the second

derivative with the least amount of trouble as possible, and by having all values from the

first derivative lying on the same field values, the second derivative will not require any

interpolation when differentiating between reversals. Second, the presentation of our data

in matrix form is highly illuminating, and will be relevant to the final form of the FORC

distribution. To this point, when creating a matrix in Igor Pro, there is no option to include

axes, and, instead, the both axes are simply indexed by row and column number. The

change to uniformly interpolated field steps ensures that each indexed point shares the

same field value. As we see from the top image in Figure 7.46, viewing all derivatives in

a graph makes identifying reversal-based changes in the slope difficult. Instead, we use

our newly uniformly spaced field values to build a matrix of reversals where the vertical
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axis is the different reversal values, while the horizontal index is uniformly-spaced field

values from Hrmin to Hmax. This matrix will satisfy the first of two necessary derivatives in

∂ 2M
∂Ha∂Hr

, with the first being a derivative of our Kerr data (magnetization in arbitrary units)

with respect to applied field (Ha), which is shown in Figure 7.47.
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Figure 7.47 An illuminating view of our first derivative. The horizontal index shows the
interpolated and equalized applied field steps and the vertical index shows the reversal
field values. The contour colors represent the values of the first derivatives. Although the
data is far from noise-less, we see significant instances of rapidly changing values of the
first derivative in reversals 1-65, between -Hrmin and Hr = 0 kOe and 0 < Ha < 2 kOe.
This corresponds to the previously seen features in Figure 7.44.

We see in the above image a matrix the mathematical result of the visually identified

features from our 135 FORC reversals. We previously saw that there were notable swift

changes in the curvature of the reversals in Figure 7.44. In addition to those which were
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manually identified, we see additional changes in curvature, for example, beginning around

Ha = 2.35 kOe, Hr= -2.5 kOe. This is just one of the two derivatives necessary to define a

FORC density plot. As stated earlier, we seek to find ∂ 2M
∂Ha∂Hr

, and we have now completed

∂ M

∂Ha
. The next derivative is ∂ M

∂Hr
, which we carry out by differentiating our slope data (first

derivative) shown in Figures 7.47 and 7.46 with respect to the reversal field. Essentially,

we are interested in how the slope curvature changes based on which reversal path is being

used. We use the same method as before to find the derivative, a weighted linear fit within

a subset of points surrounding the point of interest, with comparisons of the integral to the

original function. The result of the second derivative with respect to Hr, in matrix form, is

shown in Figure 7.48
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Figure 7.48 As expected from this type of differentiation, we have introduced a
significant amount of noise into our resulting data. We see the result of our second
derivative with respect to Hr. The sharpest values of the graph represent stark changes in
the slope between consecutive reversal field values. Again, as we expected from manual
identification of magnetization curve features, we see our most notable signal along
Ha = 1.2 kOe.

Figure 7.48 shows the result of the second derivative with a large quantity of induced

noise. This is to be expected, however, due to the interpolation process, and the use of

numerical differentiation. Between Ha = 1.2 and 2.4 kOe we see several sharp spikes

that were expected from visual identification, and several more that have come from the

differentiation process. In this particular graph, we have chosen a subset of 6 contributing

points on either side of the indexed differentiation point. Increasing or decreasing the
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number of contributing points will result in a final graph lacking in contrast or being too

sensitive to small changes in differentiation. We verify our results with the common FORC

analysis method found in the literature [34]. Rather than finding the approximation of a

derivative via linear fits at every point, literature suggests a polynomial surface fit following

eq 6.2 using the coefficient K4 as the term representing the second derivative. Figure 7.49

shows the resulting data from both methods side by side.
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Figure 7.49 The left image is the result of our manual differentiation using
Gaussian-weighted linear fits to determine the two derivatives, while the image on the
right shows one of the typical approaches from the literature. Visually identifiable features
are nominally identical, while minor features such as noise vary between methods.

The polynomial fit approach was carried out at each point by fitting a polynomial sur-

face to a 3x3 subset of points centered on the point of observation. When fitting near an

edge, the size of the box is reduced corresponding to the point of investigation’s proximity

to the nearest edge. For both methods, by changing the size of the respective "boxes" in

which fitting can occur, we will either increase resolution at the cost of more noise, or de-

crease noise at the cost of less resolved features. With both derivatives completed and our

data verified, we execute the final step, which, as stated earlier, is a change of axes:

y→ Hu =
1
2
(Ha +Hr) (7.18)

x→ Hc =
1
2
(Ha−Hr). (7.19)
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This transformation is carried out by calculating a new matrix from each point using

the above relations. The resulting symmetric graph is shown in Figure 7.50

Figure 7.50 Upon rotation we see that our data is now symmetric about Hu = 0 axis, and
the Hc axis only extends in the positive direction. The left image is the result of our
second derivative, while the right images is the same data where we have applied a
threshold to reduce the background noise for easier data interpretation.

7.7 ANALYSIS OF FORC

As mentioned earlier in the FORC theory section, much of the available analysis for FORC

is qualitative to date, and relies heavily on visual identification of certain features along the

Hu and Hc axes. Fortunately, the most common and notable effects have been mentioned

in Chapter 6. One of the easiest quantitative measurements that can be extracted from a

FORC diagram is the average coercivity of our array of nanofibers. This is simply done
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by identifying the Hc coordinate of the largest peak on the Hu = 0 axis. In our case, from

Figure 7.50, the peak appears at Hc∼ 1.34 kOe [58]. The coercivity of our major hysteresis

loop (MHL) is ∼ 0.89 kOe. While it might be shocking that these values are different, it

is actually quite encouraging. The MOKE measurement of the MHL is a "bulk" measure-

ment of the fiber agglomerate, which is nominally measuring a "3"µm diameter cylindrical

wire. Literature tells us that the coercivity is inversely related to wire diameter with a large

fiber diameter possessing a smaller coercivity [61]. We also know that the post-processed

fibers created by our collaborators have a nonzero distribution of diameters and thus the

individual fibers which make up an aligned fiber agglomerate will also have a distribution

of diameters [62]. The larger coercivity gathered from the FORC diagram is indicative that

the average diameter of a nanofiber building block is significantly smaller than the diameter

of the agglomerate that it forms. Without further tests investigating the polydispersity of

individual fibers, this cannot be said for certain.

Another piece of information that can be extracted from FORC data is the "reversibility"

of each of the minor loops [63]. Rather than looking at the final FORC diagram, this data is

gathered from individual reversals. By comparing the slope of the outer MHL to the slope

of individual reversals at the point of reversal we can reveal the reversibility factor (η) of

each reversal.

η =
χrev(H = Hr)

χMHL(H = Hr)
, (7.20)

where χrev is the slope of the reversal and χMHL is the slope of the outer major hysteresis

loop. Both of these slopes are taken at H = Hr, the individual reversal points. From this

derivative we will hopefully find this ratio ranging between 0 and 1 with 0 indicating total

orthogonality and 1 indicating a fully reversible process. Using our same software for

weighted slope fitting, we calculate this value at every reversal and show the results in

Figure 7.51.
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Figure 7.51 Reversibility as a function of reversal number. A polynomial fit is applied to
guide the eye. The ideal value of 1, indicating total reversibility is indicated on the vertical
axis.

Unfortunately, the MHL does not accurately represent the reversal process of each in-

dividual loop as we have already mentioned in Figure 7.42. Thus this data may not tell

us exactly what we hope. From the graph above we do see a general trend toward irre-

versibility as we get closer to reversals 40-60, and toward values closer to 1 (reversibility)

as we reach either end point of reversal number. Alternatively, I will define a different

reversibility constant ηrel referring to the relative reversibility of each curve, using its own

descending magnetization curve rather than that of the MHL since we have seen that the

individual reversals deviate significantly from the MHL path.
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Figure 7.52 Relative reversibility found using the descending curve from each reversals.

Because the start points where reversals occur are plagued with end behavior defects

as well as a reduction to fitting contribution due to boundaries, a reversibility rating is

able to supplement information regarding the Hu axis when Hc = 0. Figure 7.52 is indeed

much cleaner of a relationship, but this is partially due to the large amount of data points

in each individual reversal allowing for a more robust "slope" to be taken and the fact

that the reversibility for each reversal was taken from each half of a single reversal curve

(descending and ascending), which allowed us to ensure that they actually connect at the

Hri value. We see from our relative reversibility data that there are no truly irreversible

reversals, and we see a nearly monotonic increase in reversibility until about reversal 80

where we are completing fully reversible magnetization processes.

As mentioned earlier, a feature that often arises in systems of nanorods is the wishbone

shape, appearing as a result of having magnetic domains under the effect of a local inter-

action field which acts to demagnetize the overall magnetization. The characteristic shape

is a line crossing the Hc axis while being at a nonzero angle with respect to the Hu axis.

From the end of this line in the +Hu direction, we will often see a second, less intense,
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line returning to connect with the Hc axis at an angle. 7.53 shows an example of this type

of wishbone shape, adapted from the literature [64, 37]. The angular section returning to

the Hc axis typically will represent the switching back of the flipped hysterons, and the

length along the Hc axis is related to the distribution of coercivities of the representative

hysterons.

Hc

Hu

A

B

C

Figure 7.53 A characteristic wishbone shape originating from the distribution of
hysterons with different coercive switching fields under the influence of a demagnetizing
interaction field. The path A-B represents the initial switching event, while B-C represents
the hysterons switching back.
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Unfortunately, this type of shape can also appear flipped about the Hu axis, and although

it may look similar, it represents a different magnetic process, so we will refer to it as

the "V". The key difference can be seen with the appearance of large negative regions

surrounding the "V" shape. Figure 7.54 shows this type of shape, where each positive

region has a corresponding negative region in the FORC distribution. Additionally, the

part crossing the Hc axis occurs at a larger value of Hc compared to the sloped piece which

returns to the Hc axis.

Hc

Figure 7.54 The "V" shape which is distinct from the wishbone, although they look
similar. The "V" shape will show with a distinct singular maximum near the vertex of the
"V" (Red spot) while there will also be accompanying negative regions (shown in blue).
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While the wishbone and "V" look the same, the position of key features along the Hc

axis serve to differentiate the two. Comparing previous data from literature to the appear-

ance of this "V" shape, it seems that this appears when minor loop reversals cross the MHL

upon reversal. This effect is indicative of the appearance and subsequent disappearance of

an out-of-plane component of magnetization [40, 41].

Looking at our thresholded FORC diagram, it seems like we have a situation in which

we observe the "V" shape, rather than the wishbone. Figure 7.55 shows an expanded view

of the "V" region.

Figure 7.55 From our FORC diagram, we see the "V" shape, which identifies the
crossing of the MHL by the reversals, and indicates the existence of an OOP
magnetization. The dark dotted lines trace the shape of the "V" while the circled areas
show the negative regions.
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Looking at the full FORC diagram in the left image of Figure 7.55, we see multiple

pairs of positive and negative contour pairs. This has been seen to occur in systems where

discrete magnetic orientations occur as a result of a noncontinuous distribution of coerciv-

ities in hysterons [41]. This particular effect is more easily identified in systems where the

distribution of magnetic materials is known, such as a series of patterned wires.

While processing data, care was taken to minimize the loss of information as much as

possible given the instruments which were available. However, between smoothing, band-

width reduction, fitting, the methods of differentiation, it is likely that information has been

obscured, smoothed over, or replaced. When viewing our data using the Hr and Ha axes

in Figure 7.47, we took care to align the Ha axis by reducing the number of equivalently

spaced points from a larger set of points by means of linear interpolation. This was not

done, however for the reversal fields. Figure 7.43 shows that the reversals follow a linear

fit closely, though there are clearly points that do not lie directly on the line. With our total

field range of ∼7.3 kOe, and the reversal spacing designed for 150 reversals, that means

that the ideal spacing is roughly 50 Oe. Looking back to Section 7.3, we noted that the

minimum resolution available to our magnetic probe was 25 Oe. It follows that our Hr

values have error of 50%. We attempted to correct the "slowly changing field" stepping

behavior by replacing saturation parts of the field graph with exponentials that appeared

to match seamlessly to the rest of the data, but without verification from a fully resolved

magnetic probe, we cannot be sure.

Additionally, when acquiring FORC data, each reversal was acquired separately from

each other reversal data. In other words, for each reversal 200 consecutive MOKE runs

were completed to build a sufficiently low noise data set before moving to a more positive

reversal value, which then was subsequently ramped to Hmax before returning to the new

reversal value for the next 200 averages. It is unclear how other experimenters execute

data acquisition, but we may see a different magnetic response, which may match more

closely to the MHL, if we were to complete every reversal in order from most negative to
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least negative as a single run, and then repeat that pattern 200 times. Figure 7.12 shows

an example of this type of field stepping but only for 3 reversals. The former was chosen

as the processing and separation of data would be slightly less cumbersome, but a test of

the latter would be instructive on the "proper" way to handle this variable type of magnetic

history with the least amount of artifacts.

Lastly, this type of data acquisition takes a very long time (∼80 hrs). Due to how pro-

cessing is done, and the amount of interpolation therein, we may have the opportunity to

reduce the oscilloscope window from 10 to 5 seconds, which would change time/sweep

from ∼12 to ∼7 seconds per run, drastically reducing the total time for data acquisition or

for some sort of long term heating related magnetic change to take place. At the end of

this research, while we have many many magnetization curves of Janus fiber agglomerates,

we have only a singular FORC data set from which to draw conclusions, and, as we know,

a trend line cannot be made with a single data point. The measurement seems promis-

ing for future work, but with so little data, and many possible errors, the FORC specific

conclusions are currently limited.
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CHAPTER 8

CONCLUSION

Novel materials seem to dictate new and necessary measurement techniques needed for

successful characterization. Born from a collaboration between Dr. Andrew’s research

group and our own, we were given a novel multiferroic Janus fiber material, which in

turn was aligned into discrete agglomerates via extensive efforts within our research group.

With few techniques existing to magnetically characterize a small subset of these fibers, we

set out to develop an adaptation of MOKE which allows for magnetization measurements

on topographically diverse surfaces while maintaining a SNR quality high enough to dis-

criminate between noise and subtle magnetization effects. This was accomplished by tak-

ing advantage of the nominally cylindrical macroscopic shape of the aligned microscopic

fibers. Rather than using light specularly reflected in a direction following the substrate

reflections, we find an ample Kerr signal in light scattered in the 2π angular directions of

the scattering plane. By leveraging noise reduction techniques in conjunction with contin-

uous averaging, we are able to use these robust, repeatable scattered MOKE measurements

to extend our magneto-optical investigations to FORC measurements. Ideally a successful

FORC measurement will yield information regarding the distribution of magnetic coerciv-

ities and interactions within a composite magnetic material. Using MOKE in the scattered

geometry, in conjunction with careful application of smoothing and noise reduction, we

are able to construct a family of FORC curves which lead to a successful production of a

FORC diagram. While we are not able to make any absolute claims about the exact mag-

netic properties of the fibers contained within the larger agglomerate, we have seen clear

indications that there are complex magnetic interactions, and possible appearances of out
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of plane magnetization components when executing reversal curves. Future work using this

characterization technique seems promising. By repeating this measurement for different

fiber agglomerates we are likely to see fiber-specific features in all of our FORC diagrams,

which will likely lead to greater insight on the nature of how these fibers aggregate and

behave magnetically.
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APPENDIX A

APPENDIX

A.1 GENERAL PROGRAMS

All functions which appear in the appendix have been referenced in the main body of the

text and are written within the Igorpro v6.38B01 program. The programs are grouped

in subsections based on how they were used, and with which other programs they were

executed in conjunction.

A.1.1 KNIFE EDGE PROCESSING PROGRAM

This program is used in conjunction with a Labview process in order to extract waist and

FWHM parameters of a focussed gaussian beam. Each file of raw data is fitted with an

error function, and plotted. The fit function is shown below.

P(x) = A+Pmax ∗ (er f (

√
2(x−Xo)

w
)) (A.1)

From the fit function, we extract the w parameter, which is the 1
e2 parameter, where the

minimum is referred to as the beam waist. This is done for each different focal distance

in order to build a beam profile to find the optimal focal length and minimum beam waist.

From that we can extract the FWHM by multiplying our 1
e2 value by∼1.1774.

#pragma rtGlobals=3 // Use modern global access method and
strict wave access.

function KE_real()
variable i=0
setdatafolder root:Keraw
string KeRawAll=WaveList("!*step*",";","")
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variable runs= Countobjectsdfr(root:KERAW:,1)
setdatafolder root:
string Stepname,nameoferf
make/n=(runs) WaistParameter
make/n=(runs) FWHM

make/n=(4)/o Coeffsb
make/n=(runs)/t WidthName
Wave coeffsb
variable w
Variable Rng1

Variable Rng2
Variable Rng3
do

NameofErf = stringfromlist(i,KeRawAll)
setdatafolder root:keraw
wave TobeFit = \$Nameoferf
setdatafolder root:
Stepname = "steps_"+stringfromlist(i,KeRawAll)
Wave stepwave = root:Stepwaves:\$(stepname)
variable stepincrement = stepwave[2]-stepwave[1]
wavestats/q tobefit

CoeffsB[0]=v_max/100
CoeffsB[1]=-v_max //fit

erf to loaded wave
CoeffsB[2]=stepincrement*numpnts(tobefit)/2
CoeffsB[3]=stepincrement*numpnts(tobefit)/4

Funcfit/q Erf2,Coeffsb,Root:Keraw:\$(nameoferf)/x= Root:
Stepwaves:\$(stepname) /D

string fiterf = "fit_"+nameoferf
w=CoeffsB[3]
widthname[i]=nameoferf
waistparameter[i]=Abs(w)
FWHM[i] = 1.1774*Abs(w)
rng1 = Floor(abs(enoise(65535)))
rng2 = Floor(abs(enoise(65535)))
rng3 = Floor(abs(enoise(65535)))
If(i==0)

Display :keraw:\$(nameoferf) vs :stepwaves:\$(stepname)
appendtograph \$fiterf
ModifyGraph rgb(\$fiterf)=(rng1,rng2,rng3)
ModifyGraph rgb(\$nameoferf)=(rng1,rng2,rng3)

else
appendtograph :keraw:\$(nameoferf) vs :stepwaves:\$(

stepname)
appendtograph \$fiterf
ModifyGraph rgb(\$fiterf)=(rng1,rng2,rng3)
ModifyGraph rgb(\$nameoferf)=(rng1,rng2,rng3)

endif
//Print w
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i+=1
while (i<(runs))
wave w_sigma
killwaves coeffsb,w_sigma
end
%

A.1.2 BALLISTIC SCATTERING FROM CYLINDER

As the section title indicates, this program simulates light scattering from a circular surface.

In an attempt to do initial "back of the napkin" tests for the feasibility of MOKE in a

scattering geometry, this program was created. Using the equation of a sphere and the law

of reflection, this program will graph the reflected rays from an incoming "focused" plane

wave. Additionally, there is an option to place a hypothetical lens to gather scattered rays

which will cause reflected rays in the graph to appear a different color than rays missing

the hypothetical lens. The diameter, focal length, and position of all hypothetical distances

can be adjusted via prompts.
#pragma rtGlobals=3 // Use modern global access method and

strict wave access.
Function BBeam_m()
variable Rmin,Rmax,Diam, FocalL,ThetaR,ThetaEye,ThetaEyedeg,x,y,r
variable numberofslices,FocalLMM,DiamMM
Variable Osize,Fsize,Distance,Distancea,thetaslices,DivChange
variable Dprime,Scalerbprime,currentangle,m,n, mmax,radius,LensAngle,

variable lensangledeg,INSTANCE
Osize = 3000000.0 //nm
Fsize=23000.000 //nm
Distance = 75 //mm
R=500
FOCALLMM=75
DIAMMM=50
NUMBEROFSLICES=400
THETAEYEDEG=45
variable i=0
variable ycirc=0
variable p=0
string foldername

Prompt Osize, "pre-Focussed Beam size in nm"
prompt Fsize, "final size of beam at surface in

nm"
Prompt Distancea, "Focussing lens focal length(

mm)"
Prompt FolderName, "name of folder to move

things post simulation"
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Prompt ThetaEyeDeg, "Incident angle in Degrees"
Prompt R, "Radius of cylinder in nm"
prompt FocalLMM, "distance to gathering lens in

mm"
prompt lensangledeg, "Angular position of gathering

lens\r in degs" //@@@
Prompt DiamMM, "diameter of lens in mm"
Prompt Numberofslices,"How many divisions?"
Doprompt "Parameters of simulation, ~2.3 degree

beam diverence is built in.",osize,fsize,
distancea, Foldername,thetaeyedeg,R,focalLMM,
lensangledeg,DiamMM,Numberofslices

Make/o/t/n=(7) Settings

Settings[0]=num2str(Osize)+"nm"
settings[1]=num2str(fsize)+"nm"
settings[2]=num2str(distance)+"mm"
settings[3]=num2str(Thetaeyedeg)+" degrees"
settings[4]=num2str(R)+"nm"
settings[5]=num2str(focalLmm)+"mm"
settings[6]=num2str(diammm)+"mm"

lensangle = lensangledeg*Pi/180
print lensangle
thetaeye=thetaeyedeg*Pi/180
distance =Distance*1000000
diam = diamMM*1000000 //converts to nm from mm
focalL=FocalLMM*1000000
variable MaxDiv= atan((Osize-Fsize)/(2*distance))*180/pi
make/d/o/N=(numberofslices) RelaDiv
wave RelaDiv
make/d/o/N=(numberofslices) RelaDivdeg
wave RelaDivDeg
newdatafolder root:\$(foldername)

ThetaSlices= (Pi)/numberofslices
make/o/N=(numberofslices) Yvals
wave Yvals
make/o/N=(numberofslices) Yvalsdegs
wave Yvalsdegs
make/d/o/N=(numberofslices) Yvalsrads
wave Yvalsrads
make/d/o/N=(numberofslices) RelaDiv
wave RelaDiv
make/d/o/N=(numberofslices) RelaDivdeg
wave RelaDivDeg

Make/o ImagedArea
wave imagedarea

//Calculate a wave with all the Y points of the circular arc and the
divergences as a function of angle around the circle
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do
Currentangle= thetaslices*i
Ycirc = r*Sin(Currentangle)

If(Currentangle<Thetaeye)
M=r*sin(-(Currentangle)+ThetaEye)
N=r*(cos(ThetaEye-Currentangle)+1)

elseif (Currentangle > thetaeye)
M=r*sin(Currentangle-ThetaEye)
N=r*(cos(-ThetaEye+Currentangle)+1)

elseif(Currentangle==thetaeye)
M=0
N=2*r

endif
Mmax=Fsize+N*tan(Maxdiv)
Dprime=distance-N
ScalerBprime=M/(Fsize+N*tan(maxdiv))

if(currentangle > thetaeye)
Divchange=Atan(scalerbprime*(Osize-MMax)/(2*Dprime))

else
Divchange=-Atan(scalerbprime*(Osize-MMax)/(2*Dprime))

endif
Reladiv[i] = Divchange
Reladivdeg[i] = Divchange*180/pi
Yvals[i]=ycirc
YvalsRads[i]=thetaslices*i
Yvalsdegs[i]=thetaslices*i*180/pi
i+=1
while(i<numberofslices)

Make/o/d/N=(numberofslices) ThetaEyePrime
wave ThetaEyePrime
ThetaEyePrime = thetaeye+reladiv //new ThetaEye that accounts for

divergences

i=0
//Make new wave that is the angle that the beam would reflect from
make/o/N=(numberofslices) ThetaAR
wave ThetaAR

do
Currentangle= thetaslices*i
ThetaAR[i] = 2*currentangle-thetaeyeprime[i]
i+=1

while (i < numberofslices)
i=0
//Finding the Slope/Y intercept of this junk
Make/o/N=(numberofslices) Bee
wave Bee

do
if(yvals[i]==R)
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yvals[i]=yvals[i]-.0001*yvals[i] //makes sure r^2-y^2 isn’t 0,
yielding y intercept = inf

endif
i+=1
while(i<numberofslices)

bee=(yvals-tan(thetaAR))/Sqrt(r^2-Yvals^2)
i=0
variable w
variable h
If (lensangledeg >90)

W = abs(FocalL*COS(lensangle))+abs((diam/2)*Sin(Lensangle))
h = +abs(FocalL*sin(lensangle))+abs((diam/2)*cos(Lensangle))

else
W = FocalL*COS(lensangle)+(diam/2)*Sin(Lensangle)
h= FocalL*SIN(lensangle)+(diam/2)*Cos(Lensangle)

endif

VARIABLE w1=w
w=w*1.000001
variable h1= h
h=h*1.000001

do
string dwink="Yline_"+num2str(i)
Make/o/n=2 \$dwink
wave YlineLine=\$dwink
Ylineline[0]=R*sin(i*thetaslices)
string Xtring="Xline_"+num2str(i)
Make/o/n=2 \$Xtring
wave XlineLine=\$Xtring
Xlineline[0]=R*Cos(i*thetaslices)

If (thetaAR[i]>(Pi+ThetaEyePrime[i]))
Ylineline[1]=ylineline[0]
xlineline[1]=xlineline[0]

ELSE

If(thetaAR[i]> -Pi/2 && thetaAR[i]<=0) //the if statements include
desired x/y components, so generalizeing them may be the solution
to "moving" the gathering lens

//print thetaAR[i]*(W1)+bee[i]
if(tan(thetaAR[i])*(W1)+bee[i]>H1 )

Ylineline[1]=H1
Xlineline[1]= (h1-Bee[i])/tan(thetaAR[i])

elseif (tan(thetaAR[i])*(W1)+bee[i]<=H1)
Ylineline[1]=tan(thetaAR[i])*(W1)+bee[i]
Xlineline[1]=(w1)

endif
elseIf(thetaAR[i]> 0 && thetaAR[i]<=Pi/2)
//print thetaAR[i]*(W1)+bee[i]
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if(tan(thetaAR[i])*(W1)+bee[i]> H1)
Ylineline[1]=H1

Xlineline[1]= (H1-Bee[i])/tan(thetaAR[i]) //
FInish double check then check W, H assignments for
different quadrents

INSTANCE= 1
elseif(tan(thetaAR[i])*(W1)+bee[i]<=H1)

Ylineline[1]=tan(thetaAR[i])*(W1)+bee[i]
Xlineline[1]=(W1)
instance=2

endif
elseIf(thetaAR[i]> Pi/2 && thetaAR[i]<=Pi)

if(tan(thetaAR[i])*(-W1)+bee[i]> H1)
Ylineline[1]=H1

Xlineline[1]= (h1-Bee[i])/tan(thetaAR[i])
Instance=1

elseif(tan(thetaAR[i])*(-w1)+bee[i]<=h1)
Ylineline[1]=tan(thetaAR[i])*(-w1)+bee[i]
Xlineline[1]=(-w1)
Instance=3

endif
elseIf(thetaAR[i]> Pi && thetaAR[i]<=3*Pi/2)

if(tan(thetaAR[i])*(-w1)+bee[i]> h1)
Ylineline[1]=h1

Xlineline[1]= (h1-Bee[i])/tan(thetaAR[i])
Instance=1

elseif(tan(thetaAR[i])*(-w1)+bee[i]<=h1)
Ylineline[1]=tan(thetaAR[i])*(-w1)+bee[i]
Xlineline[1]=(-w1)
Instance=3

endif
ENDIF
endif
If (i==0)

Display/W=(0,0,1200,700)/n=\$(FOLDERNAME) Ylineline vs
Xlineline

Doupdate

else

variable Xwidth
xwidth= w1-Diam*sin(lensangle)

//THese if statements are wacky and need work....
//Print i
//variable eWhigh= -w
// variable ewlow=(-w+Diam*sin(lensangle)
//variable HHigh= H
//variable hlow = (H-Diam*Abs(cos(lensangle))
//variable Ecks = xlineline[1]
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//variable ewhy = ylineline[1]
//Print ewhigh, ewlow, hhigh, hlow,ecks, ewhy

if(lensangledeg>90)
if(xlineline[1]>=(-w) && Xlineline[1]<=-w1+Diam*sin(

lensangle) && Ylineline[1]>=H1-Diam*abs(cos(
lensangle)) &&abs(Ylineline[1])<=abs(H))

if (p>=127)
insertpoints p+1, 1, imagedarea

endif
appendtoGraph/c=(0,0,65000)/w=\$(

FOLDERNAME) Ylineline vs Xlineline
imagedarea[p] =thetaslices*i
p+=1

elseif (Ylineline[1]!=0)
appendtoGraph/w=\$(FOLDERNAME) Ylineline

vs Xlineline
endif

else
if(abs(xlineline[1])<=abs(w)&& Xlineline[1]>=w1-Diam*

sin(lensangle) && Ylineline[1]>=H1-Diam*abs(cos(
lensangle)) &&abs(Ylineline[1])<=abs(H))

if (p>=127)
insertpoints p+1, 1, imagedarea

endif

appendtoGraph/c=(0,0,65000)/w=\$(FOLDERNAME)
Ylineline vs Xlineline

imagedarea[p] =thetaslices*i
p+=1

elseif (Ylineline[1]!=0)
appendtoGraph/w=\$(FOLDERNAME) Ylineline vs

Xlineline
endif

endif
Doupdate

endif
i+=1
while(i<numberofslices)

imagedarea =imagedarea==0?NaN : imagedarea
wavetransform zapnans imagedarea
variable length = numpnts(imagedarea)

variable arclength = imagedarea[length-1]*R-(imagedarea[0]*R)
string arclengthWord=num2str(arclength) //Blue arclength

variable deltatheta = (180/pi)*(imagedarea[length-1]-imagedarea[0])
string DELTATHETAWORD = num2str(deltatheta) //Blue angles
variable theta1=imagedarea[0]*180/Pi
variable theta2=imagedarea[length-1]*180/pi
string theta1word = num2str(theta1)
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string theta2word=num2str(theta2)

TextBox/C/N=text0/S=3/A=MC "Arclength that was imaged is "+
arclengthword+"nm\rAngle starts at "+theta1word+" deg and ends at
"+theta2word+" degs\rTotal angle angle imaged is "+deltathetaword
+"deg"+"\rDiameter, distance, and angular position of lens is \r"+
num2str(diammm)+"mm, "+num2str(focallmm)+"mm, and "+ num2str(

lensangledeg)+ "degrees respectively."

String ListofEverything = wavelist("*",";","")
variable L=0
variable Items= itemsinlist(listofeverything)
do
string mover =stringfromlist(l,listofeverything)
Movewave \$mover, root:\$(foldername):
L+=1
while(L<items)
SetAxis left -R-((.25*R)),R+(.25*R)
SetAxis bottom -R-((.25*R)),R+(.25*R)

Print w1,w,h1,h
print (w1-Diam*sin(lensangle))
print (h1-Diam*cos(lensangle))

end
%

A.1.3 MAGNETIC RISE TIME FITTING

When investigating the response from the GMW 3470 electromagnet, I found that the re-

sponse was relatively slow and would result in a slowly deviating field value when com-

pared to a calculated value from a lookup table. To parametrize the functional response

of the electromagnet, I created this program which allows a user to select a beginning and

endpoint of an exponential-like magnetic field response by placing cursors on a graph, and

then choose one of three functions to attempt to fit the subset of data. Based on trial and

error, the initial guesses for the fit functions are drawn from the data itself. The unique as-

pect of this program allows the user to store the location of the cursor placements in waves

which is useful if you are fitting many successive magnetic responses and you need to exit

the program. fit data is saved as literal fir graphs for exact reproduction of the fit functions.
#pragma rtGlobals=3 // Use modern global access method and

strict wave access.
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Function MagneticFit()
string thesteplocation, Thetimelocation, fittype

//(X)Locate the large wave of magnetic steps and locate the x axis (
time) also

//(X)Prompt user with a textbox that asks for the user to select a
start and end location with cursors. (Use Pauseforuser

//(X)ask user to pick a fit function to use.
//(X)Ask for initial guesses (this is probably better done outside of

the program first since I am using iuser defined fit functions.
//(X)some of the parameters can be acquired from the cursors’ location
//(X)Fit the function and save the fit parameters of note. Not sure

which are important yet though :\ (use pcsr() which saves location
of cursors)

//(X) Repeat in loop, propmting user if they want to do it again at
the end of each loop.

//(X)Use fit parameters from previous run to initialize guess for the
next run.

//(X)use showinfo/hideinfo to make the cufrsors appear.

string cdfBefore = GetDataFolder(1) // Save step data folder
before.

Execute "CreateBrowser prompt=\"Locate The Steps In Current/Magnetic
Field\", showWaves=1, showVars=0, showStrs=0" //asks you to find a
wave, who’se path is stored as S_browserlist

string cdfAfter = GetDataFolder(1) // Save current data
folder after, though seeems like this is the same as
CDFbefore since execute doesn’t set the folder unless you
do that, just saves path

SetDataFolder cdfBefore // Restore
you location to original location (presumably root).

SVAR S_BrowserList=S_BrowserList //no clue why this is here
variable pathlength =strlen(s_browserlist) //length, in

numbers, of the path name.
TheStepLocation= s_browserlist[0,pathlength-2] //cuts the

semicolon from the path name

cdfBefore = GetDataFolder(1) // Save time data folder before.
Execute "CreateBrowser prompt=\"Locate The X-axis for the

steps. Usually this is Time\", showWaves=1, showVars=0,
showStrs=0" //asks you to find a wave, who’se path is
stored as S_browserlist

cdfAfter = GetDataFolder(1) // Save current data folder after,
though seeems like this is the same as CDFbefore since

execute doesn’t set the folder unless you do that, just
saves path

SetDataFolder cdfBefore // Restore
you location to original location (presumably root).

SVAR S_BrowserList=S_BrowserList //no clue why this is here
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variable pathlength2 =strlen(s_browserlist) //length, in
numbers, of the path name.

TheTimeLocation= s_browserlist[0,pathlength2-2] //cuts the
semicolon from the path name

wave Timewave =$thetimelocation
wave Stepswave = $thesteplocation

variable v_chisq
Variable p=1
Variable i=0
variable/G ender=1
Variable/g Oldies =0 //We assume that we are starting from scratch,

previous cursors used
Variable Oldrows
Make/N=1/o TauA
Make/N=1/o TauB
Make/o/N=1 StepSize
Make/o/N=1 AplusB
Make/o/N=1 Aye
Make/o/N=1 Bee

string listoffittypes="ExpAndExp;Exp;ExpAndLog;SingleExpFinder"
Prompt Fittype, " which type of Fit Function do you want?",popup,

listoffittypes
Doprompt "Select the fit that you want to use",fittype

NewPanel/Flt /K=1 /W=(500,368,800,531) as "Have you Done this before?"
DoWindow/C dejavoo
DrawText 21,20,"If you have, the cursors locations are saved"
DrawText 21,40,"Select Yes to used old cursors" //All of

this is to see if you have old cursors stored that we can use!
DrawText 21,60,"Select No to start from scratch"
Button button2,pos={80,75},size={92,20},title="Yes"
Button button2,proc=OldCursors
Button button3,pos={80,105},size={92,20}
Button button3,proc=NoOldies,title="No"
pauseforuser dejavoo

if(oldies==1) //if we have an old cursor file This is variable from
the buttonpress

cdfBefore = GetDataFolder(1) // Save step data folder before.
Execute "CreateBrowser prompt=\"Locate Cursor A’s point wave

\", showWaves=1, showVars=0, showStrs=0" //asks you to find
a wave, who’se path is stored as S_browserlist

cdfAfter = GetDataFolder(1) // Save current data folder after,
though seeems like this is the same as CDFbefore since

execute doesn’t set the folder unless you do that, just
saves path

SetDataFolder cdfBefore // Restore
you location to original location (presumably root).

SVAR S_BrowserList=S_BrowserList //no clue why this is here
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variable pathlength3 =strlen(s_browserlist) //length, in
numbers, of the path name.

string CursorALocation= s_browserlist[0,pathlength3-2] //cuts
the semicolon from the path name

cdfBefore = GetDataFolder(1) // Save time data folder before.
Execute "CreateBrowser prompt=\"Locate B’s Cursor wave\",

showWaves=1, showVars=0, showStrs=0" //asks you to find a
wave, who’se path is stored as S_browserlist

cdfAfter = GetDataFolder(1) // Save current data folder after,
though seeems like this is the same as CDFbefore since

execute doesn’t set the folder unless you do that, just
saves path

SetDataFolder cdfBefore // Restore
you location to original location (presumably root).

SVAR S_BrowserList=S_BrowserList //no clue why this is here
variable pathlength4 =strlen(s_browserlist) //length, in

numbers, of the path name.
string CursorBLocation= s_browserlist[0,pathlength4-2] //cuts

the semicolon from the path name

wave MemoryCursorA= $CursorAlocation
wave MemoryCursorB= $CursorBlocation

OldRows =numpnts(MemorycursorA)

else //make a new set of meory files with a "unique" name by
appending _0,1,2,3 by seeing if one exists with the same name

string MemCursrA_="StoredCursorA_"
string MemCursrB_="StoredCursorB_"
string uniquenameforcursorA=uniquename( MemCursrA_,1,0)
string uniquenameforcursorB=uniquename( MemCursrB_,1,0)
Make/o/n=1 $uniquenameforcursorA
Make/o/n=1 $uniquenameforcursorB
wave MemoryCursorB=$uniquenameforcursorB
wave memoryCursorA=$uniquenameforcursorA
Oldrows=0

endif

string ListofGraphNames=Winlist("Thegraph",";","")

If(strlen(stringfromlist(0,ListofGraphnames))!=0) //check if
the graph window is already there so we don’t end up with
100 of them wen troubleshooting

killwindow Thegraph
endif

Display/w=(300,100,1600,1000)/N=Thegraph StepsWave vs Timewave

Do
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Dowindow/f Thegraph
showinfo/cp=0/w=thegraph

if(i >= Oldrows||Oldrows==0) //if we are beyond the cursors that have
been stored previously, start prompting again

if (oldies==1&& i==oldrows)
print "you did your old cursors if you had any, you are

on step " + num2str(i)
Print "the last cursor set down (B) was at " + num2str(

MemorycursorB[oldrows-1])
endif

NewPanel /K=1 /W=(187,368,437,531) as "Pause for Cursor"
DoWindow/C tmp_PauseforCursor //

Set to an unlikely name
AutoPositionWindow/E/M=1/R=thegraph // Put panel

near the graph
DrawText 21,20,"Adjust the cursors and then"
DrawText 21,40,"Click Continue."
Button button0,pos={80,58},size={92,20},title="Continue"
Button button0,proc=CursorControl
Button button1,pos={80,90},size={92,20}
Button button1,proc=Endthething,title="End"
dowindow/f thegraph
PauseForuser tmp_PauseforCursor,Thegraph

endif

If(ender==1)//if ender is 1, continue, ender is 0, END THE PROGRAM

If(stringmatch(fittype,"ExpAndLog")==1)//!!!!DOES NOT CONTAIN
FULL PROGRAMMING AS EXP PLUS EXP DOES!!!!!

Make/d/o/n=6 w_coef
W_coef[0]=vcsr(b,"thegraph") //shift
W_coef[1]=vcsr(b,"thegraph")-vcsr(a,"thegraph") //A
W_coef[2]=abs(hcsr(a,"thegraph")-hcsr(a,"thegraph")/10)

//toff must not be able to add to t to =0, that
gives an infinity

W_coef[3]=-(vcsr(b,"thegraph")-vcsr(a,"thegraph"))/10//
B

W_coef[4]=(hcsr(b,"thegraph")-hcsr(a,"thegraph"))/5//
logtau

W_coef[5]=(hcsr(b,"thegraph")-hcsr(a,"thegraph"))/100//
expTau

FuncFit/n/NTHR=0 LogplusExp W_coef stepswave[pcsr(a,"
thegraph"),pcsr(b,"thegraph")] /X=timewave[pcsr(a,"
thegraph"),pcsr(b,"thegraph")] /D

ModifyGraph rgb(wave1)=(3,52428,1)
TauA[i]= {W_coef[4]}
TauB[i]= {W_coef[5]}
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//!!!!DOES NOT CONTAIN FULL PROGRAMMING AS EXP PLUS EXP
DOES!!!!!

i+=1

elseif(stringmatch(fittype,"ExpAndExp")==1)
Make/d/o/n=6 w_coef

if(i==0&&oldrows==0)// AND oldies=0//do the thing here,
otherewise, need to look at the old cursors

W_coef[0]=vcsr(b,"thegraph") //y0
W_coef[1]=vcsr(a,"thegraph")-vcsr(b,"thegraph")

//A
W_coef[2]=hcsr(a,"thegraph")//toff must not be

able to add to t to =0, that gives an
infinity

W_coef[3]=(hcsr(b,"thegraph")-hcsr(a,"thegraph")
)/40///taua

W_coef[4]=(hcsr(b,"thegraph")-hcsr(a,"thegraph")
)/5 //TauB

W_coef[5]=(vcsr(a,"thegraph")-vcsr(b,"thegraph")
)/10//B

MemoryCursorA[i]={Pcsr(A,"Thegraph")}
MemoryCursorB[i]={Pcsr(B,"Thegraph")}

FuncFit/L=800/n/NTHR=0 ExpPlusExp W_coef
stepswave[pcsr(a,"thegraph"),pcsr(b,"thegraph
")] /X=timewave[pcsr(a,"thegraph"),pcsr(b,"
thegraph")] /D

elseif(i>0 && i>=oldrows) //and if i>
numpntsmemorycursorAVariable (this CANNOT be a
moving value, must be counted when we find it)//do
the thing here, otherewise, need to look at the old
cursors

W_coef[0]=vcsr(b,"thegraph") // only need to
adjust these two fit parameters, the rest
come from the

W_coef[2]=hcsr(a,"thegraph")
W_coef[1]=vcsr(a,"thegraph")-vcsr(b,"thegraph")

//A
W_coef[3]=(hcsr(b,"thegraph")-hcsr(a,"thegraph")

)/40///taua
W_coef[4]=(hcsr(b,"thegraph")-hcsr(a,"thegraph")

)/5 //TauB
MemoryCursorA[i]={Pcsr(A,"Thegraph")}
MemoryCursorB[i]={Pcsr(B,"Thegraph")}

FuncFit/L=800/n/NTHR=0 ExpPlusExp W_coef
stepswave[pcsr(a,"thegraph"),pcsr(b,"thegraph
")] /X=timewave[pcsr(a,"thegraph"),pcsr(b,"
thegraph")] /D
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elseif(i<oldrows && oldies==1&&i==0) //if it is an old
cursor list, AND we are within the list AND if it is
the first point, give guesses for all W_coef,

Otherwise we don’t need to give all guesses.
W_coef[0]=stepswave[memorycursorb[i]] //y0
W_coef[1]=stepswave[memorycursora[i]]-stepswave[

memorycursorb[i]] //A
W_coef[2]=TimeWave[memorycursora[i]]//toff must

not be able to add to t to =0, that gives an
infinity

W_coef[3]=(TimeWave[memorycursorB[i]]-TimeWave[
memorycursora[i]])/40///taua

W_coef[4]=(TimeWave[memorycursorB[i]]-TimeWave[
memorycursora[i]])/5 //TauB

W_coef[5]=(stepswave[memorycursora[i]] -
stepswave[memorycursorb[i]] )/10//B

STEPSIZE[i] = Stepswave[MemorycursorB[i]]-
Stepswave[MemorycursorA[i]]

Setaxis left stepswave[memorycursora[i]]-.01,
stepswave[memorycursorb[i]]+.01

SetAxis bottom TimeWave[memorycursorA[i]]-.35,
TimeWave[memorycursorB[i]]+.35

Textbox/c/N=Text0/s=3/A=MC "i= "+num2str(i)
FuncFit/Q/L=800/n/NTHR=0 ExpPlusExp W_coef

stepswave[memorycursora[i],Memorycursorb[i]]
/X=timewave[memorycursora[i],Memorycursorb[i
]] /D

elseif(i<oldrows && oldies==1&&i!=0)
W_coef[2]=TimeWave[memorycursora[i]]//toff must

not be able to add to t to =0, that gives an
infinity

W_coef[0]=stepswave[memorycursorb[i]]
W_coef[1]=stepswave[memorycursora[i]]-stepswave[

memorycursorb[i]] //A
W_coef[3]=(TimeWave[memorycursorB[i]]-TimeWave[

memorycursora[i]])/40///taua
W_coef[4]=(TimeWave[memorycursorB[i]]-TimeWave[

memorycursora[i]])/5 //TauB
W_coef[5]=(stepswave[memorycursora[i]] -

stepswave[memorycursorb[i]] )/10//B
Setaxis left stepswave[memorycursora[i]]-.01,

stepswave[memorycursorb[i]]+.01
SetAxis bottom TimeWave[memorycursorA[i]]-.35,

TimeWave[memorycursorB[i]]+.35
Textbox/c/N=Text0 "i= "+num2str(i)
FuncFit/Q/L=800/n/NTHR=0 ExpPlusExp W_coef

stepswave[memorycursora[i],Memorycursorb[i]]
/X=timewave[memorycursora[i],Memorycursorb[i
]] /D
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STEPSIZE[i] = Stepswave[MemorycursorB[i]]-
Stepswave[MemorycursorA[i]]

endif

//FuncFit/L=400/n/NTHR=0 ExpPlusExp W_coef stepswave[
pcsr(a,"thegraph"),pcsr(b,"thegraph")] /X=timewave[
pcsr(a,"thegraph"),pcsr(b,"thegraph")] /D

doupdate/w=thegraph
string nameofFit="Fit_"+(nameofwave(stepswave))
wave fitwave =$nameoffit
ModifyGraph rgb($nameoffit)=(3,5000,5300)
doupdate/w=thegraph
TauA[i]= {W_coef[3]}
TauB[i]= {W_coef[4]}
Aye[i]= {W_coef[1]}

Bee[i]= {W_coef[5]}

string newfitname= NameofFit+"_"+num2str(i)

Duplicate/o fitwave, $newfitname
//StepSize[i]={vcsr(b,"thegraph")-vcsr(a,"thegraph")}
AplusB[i]={W_coef[1]+W_Coef[5]}//gonna try A+B on this

one, cause they look like they sum to be the exact
step size

i+=1

elseif(stringmatch(fittype,"Exp")==1)//!!!!DOES NOT CONTAIN
FULL PROGRAMMING AS EXP PLUS EXP DOES!!!!!

if (oldies==1&& i<oldrows)
curveFit/q/L=800/n/NTHR=0 Exp_Xoffset,kwcWave=

w_coef, stepswave[memorycursora[i],
Memorycursorb[i]] /X=timewave[memorycursora[i
],Memorycursorb[i]]/D

Setaxis left stepswave[memorycursora[i]]-.01,
stepswave[memorycursorb[i]]+.01

SetAxis bottom TimeWave[memorycursorA[i]]-.35,
TimeWave[memorycursorB[i]]+.35

Textbox/c/N=Text0 "i= "+num2str(i)
elseif(oldies==1 && i>=oldrows)

curveFit/Q/L=800/n/NTHR=0 Exp_Xoffset,kwcWave=
w_coef, stepswave[pcsr(a,"thegraph"),pcsr(a,"
thegraph")+150] /X=timewave[pcsr(a,"thegraph
"),pcsr(a,"thegraph")+150]/D

MemoryCursorA[i]={Pcsr(A,"Thegraph")}
MemoryCursorB[i]={Pcsr(A,"Thegraph")+150}

elseif(oldies!=1)
curveFit/Q/L=800/n/NTHR=0 Exp_Xoffset,kwcWave=

w_coef, stepswave[pcsr(a,"thegraph"),pcsr(a,"
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thegraph")+150] /X=timewave[pcsr(a,"thegraph
"),pcsr(a,"thegraph")+150]/D

MemoryCursorA[i]={Pcsr(A,"Thegraph")}
MemoryCursorB[i]={Pcsr(A,"Thegraph")+150}

endif

doupdate/w=thegraph
nameofFit="Fit_"+(nameofwave(stepswave))
wave fitwave =$nameoffit
ModifyGraph rgb($nameoffit)=(3,5000,5300)
doupdate/w=thegraph
Aye[i]={w_coef[1]}
TauA[i]= {W_coef[2]}

i+=1
Elseif(stringmatch(fittype,"SingleExpFinder")==1)

String chisname="AllmyChi_"+num2str(i)
Make/o/n=1 $chisname
wave Chiwave=$chisname

String chisNameTime="ChiTimes_"+num2str(i)
Make/o/n=1 $chisNameTime
wave ChiTimeWave=$chisNameTime

variable R=0
p=2

if(oldies==1)

do
curveFit/Q/L=800/n/NTHR=0 Exp_Xoffset,

kwcWave=w_coef, stepswave[
memorycursora[i],memorycursora[i]+200+
p] /X=timewave[memorycursora[i],
memorycursora[i]+200+p]/D

chiwave[R]={v_chisq/(p+200)}
//Print v_chisq
//print chiwave[r]
Chitimewave[R]={Timewave[memorycursora[i

]+200+p]-Timewave[memorycursora[i]]}

p+=10
R+=1

while((200+p)<=((memorycursorb[i])-memorycursora
[i]))

elseif(oldies==0)

do
curveFit/Q/L=800/n/NTHR=0 Exp_Xoffset,

kwcWave=w_coef, stepswave[pcsr(a,"
thegraph"),pcsr(a,"thegraph")+200+p] /
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X=timewave[pcsr(a,"thegraph"),pcsr(a,"
thegraph")+200+p]/D

Chiwave[R]={v_chisq/(p+201)}
Chitimewave[R]={Timewave[pcsr(a,"thegraph

")+200+p]-Timewave[pcsr(a,"thegraph")
]}

p+=10
R+=1

while(p<=(pcsr(b,"thegraph")-pcsr(a,"thegraph"))
)

endif
Print nameofwave(chitimewave)
i+=1
print i
endif

endif //endif for ender, otherwise it skips the whole fitting part and
goes straight to end

While(Ender!=0)

//killwindow thegraph
end

Function CursorControl(CtrlName) : ButtonControl
string ctrlName
variable/G Ender=1
killwindow tmp_pauseforcursor

End

Function Endthething(CtrlName) : ButtonControl
string CtrlName

variable/G Ender=0 //End the program, presumably if you have no more
steps to take. Variable is glabal so it can be shared between
programs

killwindow tmp_pauseforcursor
End

Function NoOldies(CtrlName) : ButtonControl
string CtrlName

variable/G oldies=0
killwindow Dejavoo
End

Function OldCursors(CtrlName) : ButtonControl
string CtrlName

157



www.manaraa.com

variable/G oldies=1
killwindow Dejavoo
End
//using wave[i]={variabe} will addit to the end even if there are not

enough indicies.
//Uniquename is a function that avoids naming issues! :D
//Log all of the cursor positions so that multiple fits can be run off

of the same graph once it has been used once?
//On the note above, I can store the Cursor positions , or just the

Whole W_COef as a function of i, so we get Wcoef1,wcoef2,wcoef3..
etf.

A.2 MOKE SPECIFIC PROGRAMS

A.2.1 BULK NORMALIZING

This program is used to normalize large batches of MOKE data. By looking at the average

min and average max of each MOKE run, the data is normalized and centered about y=0

and the min and max values are scaled to ±1. Unfortunately this program requires all files

to be in certain folders to work properly. It is best used in conjunction with the program in
Function MassSaS()

string source,folderofinterest,suffix
variable i=0
variable c=0
string yes

Prompt FolderofInterest,"root:subfolder1:subfolder2: ... :
subfolderN:"

doPrompt "full path to waves",Folderofinterest
Variable Counter
print folderofinterest

//if(stringmatch (folderofinterest, "root"))
// Counter = CountobjectsDFR(root:,1)
//else

Counter = CountobjectsDFR(\$(folderofinterest),1)
// endif
print folderofinterest
Prompt Suffix, "what will be the suffix of rotation wave. eg.

Rotation_’...’"
doprompt "naming", suffix

string fullRotationname= "Rotation_"+suffix
make/o/n=(counter) \$fullrotationname
wave rotation =\$fullrotationname
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string nameofrotators = "Rotators_"+suffix
make/o/n=(counter)/t \$nameofrotators
wave/t rotators=\$nameofrotators

NewDataFolder/O root:NormalizedWaves
Newdatafolder/O root:OriginalWaves
setdatafolder root:Normalizedwaves
killwaves/a
setdatafolder root:

Do
String Namedatwave

namedatwave=Getindexedobjnamedfr(\$(folderofinterest),1,
i)

setdatafolder \$(folderofinterest)

wave uggwave =\$namedatwave
//print namedatwave
Variable n
Variable Totalpoints =numpnts(uggwave)

n =floor(numpnts(uggwave)/4)
String destination // name of destination wave
Variable segment, numSegments
Variable startX, endX, lastX
destination= NameOfWave(uggwave)+"_m" // derive name of

dest from source
numSegments = trunc(numpnts(uggwave) / n)
if (numSegments < 1)

DoAlert 0, "Destination must have at least one
point"

endif

if(numsegments>0)

Make/O/N=(numSegments) \$destination
WAVE destinationw = \$destination
lastX = pnt2x(uggwave, numpnts(uggwave)-1)

for (segment = 0; segment < numSegments; segment += 1)

startX = pnt2x(uggwave, segment*n) // start X
for segment

endX = pnt2x(uggwave, (segment+1)*n - 1)// end X
for segment

// this handles case where numpnts(source)/n is
not an integer

endX = min(endX, lastX)
destinationw[segment] = mean(uggwave, startX,

endX)
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endfor

String dest
variable size
variable Offset
Variable scale
Variable MinAvg
Variable MaxAvg //Change the min / max finder to query

the average values instead of the min/max
make/o M_wavestats
wave M_wavestats
make/o/n=(floor(totalpoints/25)) first1
make/o/n=(floor(totalpoints/25)) last1
wave Firstwave = first1
wave lastwave = last1

duplicate/o/R=[0,FLOOR(totalpoints*.04)-1] uggwave,
firstwave

duplicate/o/R=[totalpoints-1-FLOOR(totalpoints*.04),
totalpoints-1] uggwave, lastwave

concatenate/o {firstwave,lastwave}, FLwave
wavestats/w/Q FLwave
MinAvg = M_wavestats(3)

wavestats/w/q/R=(floor((totalpoints/2)-0.04*totalpoints
),floor((totalpoints/2)+0.04*totalpoints)) uggwave

MaxAvg = M_wavestats(3)
KILLWAVES FIRST1, LAST1, FLWAVE, M_wavestats

rotators[i] = nameofwave(uggwave)
Rotation[i]= Maxavg-minavg
Offset=(MinAvg+MaxAvg)/2
Scale=(MaxAvg-MinAvg)/2
dest ="N_"+ NameOfWave(Uggwave) // derive name of dest

from source
size=numpnts(uggwave)//Match numer of points in new wave = to

the number of points in the source wave

Make/O/N =(size) \$dest //make a new wave to fill the
space reserved for dest

wave destw= \$dest //assign a name destw to the wave
derived from dest

destw=Uggwave-Offset//fill slots of destw with this
operation

destw/=scale

Killwaves destinationw
Print Nameofwave(uggwave)+" is now normalized!"
Movewave destw,root:normalizedwaves: //puts the

normalized wave in a seperate folder

160



www.manaraa.com

endif
i+=1
//print i

while(i<=(counter-1))
killwaves m_wavestats

// do
// string movingwave =getindexedobjname("",1,0)

// wave movingwave=\$movingstring
// movewave movingwave:
// while

setdatafolder \$(folderofinterest)//root:

String ListofEverything = wavelist("*",";","") //moves all the
original waves but leaves the rotatio nwave

variable L=0
variable Items= itemsinlist(listofeverything)
do
string mover =stringfromlist(l,listofeverything)
if( stringmatch(mover,"!rotat*")==1)
Movewave \$mover, root:originalwaves:
endif
L+=1
while(L<(items))
setdatafolder root:

End

A.2.2 WAVE AVERAGES

This program uses the filename prefixes to match like-runs and then averages them and

sorts them into separate folders. Useful to parse large numbers of individual runs to singular

low-noise average runs. The beginning of the program includes some notes specific to

usage.
#pragma rtGlobals=3 // Use modern global access method and

strict wave access.
function WaveAverages()

//This program will hopefully avearge waves with the same prefix name,
aka if you have run_0001, run_0002, run_0003 ,runb_0001,runb_0002

, test
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//the program will average the Run prefix, the runb prefix and leave
the test alone since it doesn’t have a suffix.

//this will help, ideally, speed up averaging if i have multiple few-
run trials, aka 50, 20-run averages that would take a while to use
the waves average panel to do averaging for.

//what do i need then? Since my files always end up in 2 folders ,
Normalized waves and Original waves from the MassSas() program (
run that first), I should be able to just ask

// for normalized or original waves....or just do that by default All
i need is the path to get to the folder because maybe i had pre
set them ahead of time.

Variable i=0
Variable p=0
String nameoffolder
string thefolder
//just like the coercivity() program, i will ask you to find the

folder that you want to pull waves from.
String cdfBefore = GetDataFolder(1) // Save current data folder before

.
Execute "CreateBrowser prompt=\"Find the folder with MOKE data\",

showWaves=0, showVars=0, showStrs=0" //asks you to find a data
folder, who’se path is stored as S_browserlist

String cdfAfter = GetDataFolder(1) // Save current data folder afte,
though seeems like this is the same as CDFbefore since execute
doesn’t set the folder unless you do that, just saves path

SetDataFolder cdfBefore // Restore current
data folder.

SVAR S_BrowserList=S_BrowserList //no clue why this is here
All of this just

locates the right folder full of waves.
variable pathlength1 =strlen(s_browserlist) //length, in numbers, of

the path name..
Thefolder=s_browserlist[0,pathlength1-2] //cuts the semicolon from the

path name

setdatafolder \$(thefolder)
variable numberofFolders =countobjectsdfr(\$(thefolder),4)

do
string AreyouSingle =getindexedobjnamedfr(\$(thefolder)

,4,p)

if(stringmatch(areyousingle,"singles")==0&&(p==
numberoffolders-1)||numberoffolders==0)

newdatafolder singles
p=numberoffolders

//Looks to see
if there is already a folder named "singles"
in which to put single runs, if so, it puts
them in there, if not, it makes one.

elseif (stringmatch(areyousingle,"singles")==1)
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p+=numberoffolders
else

p+=1
endif

while (p<numberoffolders)

Variable NumberOfWaves =countobjectsDFR(\$(thefolder),1)
String AllTheWaves=wavelist("*",";","")

Do
String JustoneWave=StringFromlist(i,Allthewaves)

If(stringmatch(Justonewave, "*_0*")==0) //this attempts
to find all waves taht were part of multiruns,

which wil have _XXXX where XXXX is
0000,0001,0002...9999.

Movewave \$Justonewave, :singles: //will
move, non-multirun waves to their own folder

Endif

i+=1
While (i<numberofwaves)

//previous to this point is just identifying the folder of interest
and making sure taht the only waves within it are ones that are
part of a multifun

//Now begins the averaging. First thing to check is if there is a
destination for each average. Use same checking method as earlier
for "singles" folder.

i=0
p=0
numberofFolders =countobjectsdfr(Root:,4)

do
string AreyouAverage =getindexedobjnamedfr(root:,4,p)

if(stringmatch(areyouAverage,"AverageWaves")==0&&(p==
numberoffolders-1)||numberoffolders==0)

newdatafolder Root:AverageWaves
p=numberoffolders

//Looks to see
if there is already a folder named "singles"
in which to put single runs, if so, it puts
them in there, if not, it makes one.

elseif (stringmatch(areyouaverage,"AverageWaves")==1)
p+=numberoffolders

else
p+=1

endif
while (p<numberoffolders)

p=0
i=0
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NumberOfWaves =countobjectsDFR(\$(thefolder),1)
AllTheWaves=wavelist("*",";","") //at this point we want to start

creating average waves by looking through lists and dentifying
waves with similar prefixes (Name_XXXX, remove the XXXX and use
that to match)

Do
String Lookingatyou=Stringfromlist(P,Allthewaves)
String LookingatyouNext=Stringfromlist(P+1,Allthewaves)
Variable Length1=strlen(lookingatyou)
Variable Length2=strlen(lookingatyounext) //need to

make a wave that they will all add into!
Variable SameRun=cmpstr(Lookingatyou[0,length1-6],

Lookingatyounext[0,length2-6]) //eliminates the
_xxxx from the wave so we are just comparing the
prefixes Wave_0000-->Wave

If(i==0)
string LookingatyourAverage =

lookingatyou[0,LENGTH1-6]+"_Avg"
Make/o/n=(numpnts(\$Lookingatyou)) \

$lookingatyouraverage
wave W_lookingatyouraverage=\

$lookingatyouraverage
wave W_lookingatyou=\$lookingatyou
W_lookingatyouraverage=W_lookingatyou

i+=1
elseif(sameRun ==0)

WAVE w_lookingatyou = \$lookingatyou
W_lookingatyouraverage=

W_lookingatyouraverage+W_lookingatyou
//Sorts and averages waves based on
prefixes

i+=1
Elseif(Samerun!=0)

WAVE w_lookingatyou = \$lookingatyou
W_lookingatyouraverage=

W_lookingatyouraverage+W_lookingatyou
W_Lookingatyouraverage=(

W_lookingatyouraverage)/(i+1)
MOVEWAVE w_lookingatyouraverage, Root:

averagewaves:
i=0

endif
p+=1

While(p<Numberofwaves)

setdatafolder root:
end
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A.3 FORC PREPARATION PROGRAMS

The FORC Programs are generally part of a flow and should be used in the order presented

here. The first program (LoaderOsci()) takes raw data from the oscilloscope and loads it

into Igorpro. Care must be taken that the maximum amount of data is not exceeded within

Igorpro. It is often wise to Split the raw data into folders with no more than 4 GB of data

in each. The next program, BadEgg(), will look for errors as outlined in figures ?? and

??.When gathering FORC data, the gauss probe will infrequently fail to record the field

sweeps properly. This program looks a the min and max values of the field sweeps and

compares them, within a threshold, to neighboring field sweeps. The program marks a

value as rotten when the values fall outside of the threshold range. The index of the bad

run is marked and the name of the field file, and corresponding MOKE is recorded. Next,

we use TimeEqualizer() to take the MOKE and Field data which are both formatted in

2 column format: Signal,Time, and match up the indices by time so that we can remove

time as an axis, knowing that we will now have MOKE and Field corresponding at each

index for each point. Next we use our data, which has been cleaned of bad runs and is

in the Kerr-Field pairs as desired, and we sort each wave by it’s reversal number which

was determined from the BaggEqq() prrogram, when looking at min field values (which

determines at which field value a reversal occurs). Here, also, the bad eggs are deleted

and the program will produce one averaged set of data for each field/Kerr pair for each

reversal. The next step is optional but recommended. Using the Smoother() program, the

user is able to look at each piece of data, wether it be the Kerr or Field data, and apply a

LOESS or Box smoothing algorithm to reduce gaussian-type noise. This is encouraged but

not mandatory. Additionally, the program allows for exponential fitting between a subset

of data points determined by user placed cursors.The panels for user interface are shown

here.
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Figure A.1 The top panel allows the user to try various box sizes for numerical
smoothing and will display the resulting graph as a result of the value chosen. This top
box will continue to appear until the user selects any of the bottom 3 options. The lower
panel appears if we select the "Looks good, Proceed to fitting" option. This is used to fit
the saturation limits of the magnetic field with a single exponential to overcome the poor
resolution of the gauss probe.

Following a satusfactory fitting, the user has the option to replace the subset of points

with the fit. This is especially useful for fixing the 25G minimum step issue that is dis-

played with certain gaussprobes near saturation values. Finally, we use OsciForcNorm() to

normalize and split each reversal Kerr data so that it is only the increasing half. The user

has the option to simply offset the minor reversals to line up with the sautration value of the

largest outer reversal or offset every curve and normalized them so that the outer curve runs

between±1 and the minor loops are scaled appropriately to the major loop. This particular

workflow prepares the data for the actual FORC analysis.
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A.3.1 LOADING FORC DATA FROM THE OSCILLOSCOPE

#pragma rtGlobals=3 // Use modern global access method and
strict wave access.

//This program specifically loads from the oscilloscope. The reason
being is that the namin convention into igor assumes

//a naming convention coming from the osci. We assume that the name
attached to the file is followed by 00000.txt which is

//important for naming AND sorting files with this program.
// Make sure there are no lingering files in the root before you start

this. It will have trouble exiting
//possibly could add a quick loop to put all files in root into a

temporary folder, then move them back after the program runs???

function LoaderOsci()
//initialize loop variable
Variable L=0
variable FolderWatch=200
variable Sorter = 0
variable foldersorter=0
variable i=0
variable g=0
string wname,fname //wave names and file name,

respectively
String XorY
getfilefolderinfo/D
if (datafolderexists("A_waves")==0)

newdatafolder/O root:A_waves
endif
if (datafolderexists("B_waves")==0)

newdatafolder/O root:B_waves
endif
if (datafolderexists("Timewaves_A")==0)

newdatafolder/O root:Timewaves_A
endif

if (datafolderexists("Timewaves_B")==0)
newdatafolder/O root:Timewaves_B

endif

newpath/O DataAnalysis S_path
//Create a list of all files that are .txt files in the folder

. -1 parameter addresses all files.
string filelist= indexedfile(DataAnalysis,-1,"????")
filelist = SortList(filelist, ";", 16)

//Pull the prefix of the first wave, compare each prefix to
that of the first, if it matches, name it one way, if not
name the other.

//Begin processing the list
do

//store the ith name in the list into wname.
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fname = stringfromlist(i,filelist)

If (stringmatch(fname ,".DS_Store")==1)
i=i+1

Fname = stringfromlist(i,filelist)

else

string Timename
string name
variable totallength=strlen(fname)
variable namelengthvariable=0
L=0

Do //pull the suffix number from the
first non-zero digit following the name

string readspot= Fname[totallength-9+L]

if (str2num(readspot)!=0)
string Suffix= Fname[

totallength-9+L,
totallength-5]

endif
L+=1

while(str2num(Readspot)==0)

if(sorter==0)
string matchMeprefix = "C2" //

Changing this from fname[0,1]
string Actualprefix = fname[0,1]
sorter+=1

elseif(sorter!=0)
Actualprefix = fname[0,1]

endif

if (stringmatch(matchMeprefix,
Actualprefix)==1)

name = fname[2,totallength-10]+"_"+Suffix
+"a"

Timename="T_"+name

else
name = fname[2,totallength-10]+"_

"+Suffix+"b"
//gootta add 2

more indexes here for when i
Timename="T_"+name

//am moving
things to folders mid run.
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endif
//used to be linear Time as X axis,

now linear magnetic field

string info=""

info+="N=’"+Timename+"’;"
info += "N=’"+name+"’;"
info+= "N=’_skip_’;N=’_skip_’;"

Loadwave/a/b=info/d/J/Q/P=
DataAnalysis stringfromlist(i
,filelist)

// if(i==(i+50))
print "Loaded "+fname

// endif

if(i == folderwatch)

do
string overflowlist=WaveList

("*",";","")
string overflowname =

stringfromlist(0,overflowlist)
wave overflowwave= $overflowname
if(stringmatch(overflowname[strlen

(overflowname)-1],"A")==1&&(
stringmatch(overflowname[0],"T
")==0))

deletepoints/M=0 0, 5,
overflowwave

Movewave overflowwave,
root:A_waves:

elseif(stringmatch(overflowname[
strlen(overflowname)-1],"B")
==1&&(stringmatch(overflowname
[0],"T")==0))

deletepoints/M=0 0, 5,
overflowwave

Movewave overflowwave,
root:B_waves:

elseif(stringmatch(overflowname
[0],"T")==1&&stringmatch(
overflowname[strlen(
overflowname)-1],"B")==1)

deletepoints/M=0 0, 5,
overflowwave

Movewave overflowwave,
root:Timewaves_B:

elseif(stringmatch(overflowname
[0],"T")==1&&stringmatch(
overflowname[strlen(
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overflowname)-1],"A")==1)
deletepoints/M=0 0, 5,

overflowwave
Movewave overflowwave,

root:Timewaves_A:

endif

while(Countobjectsdfr(root:,1)!=0)

folderwatch+=200
endif

i =i+1 //move to next file
endif

while(i<itemsinlist(filelist)) //end when all
files are processed.

do
overflowlist=WaveList("*",";","")
overflowname =stringfromlist(0,

overflowlist)
wave overflowwave= $overflowname
if(stringmatch(overflowname[strlen(

overflowname)-1],"A")==1&&(stringmatch
(overflowname[0],"T")==0))

deletepoints/M=0 0, 5,
overflowwave

Movewave overflowwave,
root:A_waves:

elseif(stringmatch(overflowname[
strlen(overflowname)-1],"B")
==1&&(stringmatch(overflowname
[0],"T")==0))

deletepoints/M=0 0, 5,
overflowwave

Movewave overflowwave,
root:B_waves:

elseif(stringmatch(overflowname
[0],"T")==1&&stringmatch(
overflowname[strlen(
overflowname)-1],"B")==1)

deletepoints/M=0 0, 5,
overflowwave

Movewave overflowwave,
root:Timewaves_B:

elseif(stringmatch(overflowname
[0],"T")==1&&stringmatch(
overflowname[strlen(
overflowname)-1],"A")==1)

deletepoints/M=0 0, 5,
overflowwave
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Movewave overflowwave,
root:Timewaves_A:

endif
while(Countobjectsdfr(root:,1)!=0)

Print "Presto Load-o!!"
print "The next thing you want to run is Badegg()"

end
%

A.3.2 BAD RUN FINDER

#pragma rtGlobals=3 // Use modern global access method and
strict wave access.

Function Badegg()
//Look at the min field value where it reverses. Find the avg value

there at the bottom.
//make an indexed list that has in it the value of the min field.
//we can give it an approx point value to start at AND do the slope

thing
variable stinker=0
variable maxstinker= 0
variable i=0
variable s=0
variable r=1
variable wereversed=0
variable deltaH =.8371/100 //this should be the total H range / number

of reversals, here it was approx .85/80 i think
variable MinThreshFraction=.15 //these are picked arbitraily
variable MaxThreshFraction=.006
Variable Minpoint1=4800
variable minpoint2=5200
variable pointsfromEnd=300
variable thisminvalue, thismaxvalue, lastminvalue,lastmaxvalue,

nextminvalue,nextmaxvalue,mindeltalast,maxdeltalast,mindeltanext,
maxdeltanext

//Execute "CreateBrowser prompt=\"Find the folder with Field Waves\",
showWaves=1, showVars=0, showStrs=0" //asks you to find a wave,
who’se path is stored as S_browserlist

//SVAR S_BrowserList=S_BrowserList //no clue why this is here
//variable pathlength2 =strlen(s_browserlist) //length, in numbers, of

the path name.
//string waveLocationB= s_browserlist[0,pathlength2-2] //cuts

thesemicolon from the path name
string wavelocationb="Root:B_waves"

make/o/n=1 $(wavelocationb+":Trash")=1 //this fixes our endpoint
problems, but adds an extra wave to the list which is delteed at
the end

wave trash= $(wavelocationb+":Trash")

if(stringmatch(wavelocationB,"*B_waves*")==1)
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setdatafolder Root:B_waves
//we look at the field waves

because they are the X axis, if they are bad, then
there is no reason to look at the corresponding MOKE

string list1=WaveList("*",";","")
setdatafolder Root:

else
setdatafolder root:A_waves
list1=WaveList("*",";","")
Setdatafolder root:

endif

Make/n=1/o MinValues
Make/n=1/o MaxValues
Make/n=1/o/t Indexednames
Make/n=1/o StinkerList

variable Numfiles= countobjectsDFR($(wavelocationB),1)//have this to
try to avoid lastpoint errors

Do

if(strlen(stringfromlist(i+1,list1))==0)
break

endif

if(i!=0)
string lastfieldname = wavelocationB+":’"+

stringfromlist(i-1,list1)+"’" //construct the
path to the previousfieldFWave

wave lastfieldwave= $lastfieldname
endif

string thisfieldname = wavelocationB+":’"+
stringfromlist(i,list1)+"’" //construct the
path to the fieldFWave

wave thisfieldwave= $thisfieldname
string nextfieldname = wavelocationB+":’"+

stringfromlist(i+1,list1)+"’" //construct the
path to the next fieldFWave

wave nextfieldwave= $nextfieldname

//it also makes our exit condition look at the lenght of the NEXT wave
since this is the last wave and I ultimately intend to skip it!

if(i==0)
wavestats/q/r=[minpoint1,minpoint2]/w thisfieldwave

wave m_wavestats //the 4800
is picked based on this particular data set,
one should look at the data you are using to
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find where the field becomesflat at the
minimum. The time should be the same

minvalues[i]={M_wavestats[3]}
wavestats/q/r=[numpnts(thisfieldwave)-pointsfromend,

numpnts(thisfieldwave)-1]/w thisfieldwave //
just iek the min, the max index is chosen
arbitralily

maxvalues[i]={m_wavestats[3]}
wavestats/q/r=[minpoint1,minpoint2]/w nextfieldwave

minvalues[i+1]={M_wavestats[3]}
wavestats/q/r=[numpnts(nextfieldwave)-pointsfromend,

numpnts(nextfieldwave)-1]/w nextfieldwave //
just iek the min, the max index is chosen
arbitralily

maxvalues[i+1]={m_wavestats[3]}
elseif(i>0&&i!=numfiles-2)

wavestats/q/r=[Minpoint1,minpoint2]/w nextfieldwave
minvalues[i+1]={M_wavestats[3]}

wavestats/q/r=[numpnts(nextfieldwave)-pointsfromend,
numpnts(nextfieldwave)-1]/w nextfieldwave //
just iek the min, the max index is chosen
arbitralily

maxvalues[i+1]={m_wavestats[3]}
endif

/// for all reversal field
values because of how the labview is written to hit the min
at 5 sec or whatever, it will hit min at 1/2 totat time

IndexedNames[i]={nameofwave(thisfieldwave)}
ThisMinValue = minvalues[i]

// since we are threshholding, we are comparing points
with eachother, looking for consistancy.

ThisMaxValue=Maxvalues[i]

if(i!=numfiles-2)
nextminvalue=minvalues[i+1]
nextmaxvalue=maxvalues[i+1]

endif

if(i!=0)
lastminvalue=minvalues[i-1]
lastmaxvalue=maxvalues[i-1]

endif

if (stinker==1||Maxstinker==1)
lastminvalue=minvalues[i-2]
lastmaxvalue=maxvalues[i-2]

endif
MindeltaLast=abs(thisminvalue-lastMinValue)
MaxdeltaLast=abs(thisMaxvalue-lastMaxValue)
MindeltaNext=abs(thisminvalue-NextMinValue)
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MaxdeltaNext=abs(thisMaxvalue-NextMaxValue)
if(i==7979)

print "oi"
endif

if(i>0&&Maxdeltalast<=Maxthreshfraction*Lastmaxvalue||
MaxdeltaNext<=Maxthreshfraction*Nextmaxvalue) //checks if
the previous point minus the current point fall within the
threshold for the MAX value. this catches large errors

maxstinker=0
//if it

falls within, we say that there are no such errros
like that

if(i>0&&MindeltaNext<=(minthreshFraction*deltaH)||
MindeltaLast<=(MinThreshFraction*deltaH))
//if there are no MAX errors, check the min. Does it
fall in the threshold?

stinker=0

elseif(i>0&&thisminvalue>=lastMinValue-(1+1.2*
MinThreshFraction)*DeltaH&&thisminvalue<=
lastMinValue-(1-1.2*MinThreshFraction)*DeltaH) //
this looks for a threshhold that is displaced by
DelttaH ( the reversal step sizes)

stinker=0
elseif(i>0&&thisminvalue>=nextMinValue-(1+1.2*

MinThreshFraction)*DeltaH&&thisminvalue<=
nextMinValue-(1-1.2*MinThreshFraction)*DeltaH)

stinker=0
elseif(i>0)

stinkerlist[s]={i} // if it
falls outside of the threshold, mark as
stinker, then check the point after in the
later (earlier, up the page) part of the code

s+=1
stinker=1

endif

elseif(i>0&&Maxdeltalast>=Maxthreshfraction*Lastmaxvalue||
MaxdeltaNext>=Maxthreshfraction*nextmaxvalue) //if there
is a max stinker, mark it as such

stinkerlist[s]={i}
s+=1
MaxStinker=1

elseif(i==0)

endif

i+=1
while(1)
killwaves trash
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//indexednames[i]={nextfieldname}

duplicate/o minvalues, Cut_minvalues //after the points
have all been hit , make duplicates of the lists we have been
making and remove the stinnker indicies from those lists

duplicate/o maxvalues,Cut_maxValues
duplicate/o/t IndexedNames,Cut_indexednames
variable p=1
do

variable badIndex=stinkerlist[numpnts(stinkerlist)-p]
deletepoints badindex,1,cut_maxvalues
deletepoints badindex,1,cut_minvalues
deletepoints badindex, 1, cut_IndexedNames
p+=1

while(p<=numpnts(stinkerlist))
//Now I have to find reversals. Should be easier to do sepearetley

since there are no more errors to dodge around.

i=0
if(abs(cut_maxvalues[0]-cut_minvalues[0])<abs(cut_maxvalues[numpnts(

Cut_minvalues)-1]-cut_minvalues[numpnts(cut_minvalues)-1]))
Make/o/n=0 Reversing_minvalues
Make/o/n=0 Reversing_maxvalues
Make/o/t/N=0 Reversing_Names
//Make/o/N=0 ReversingReversal_index

Do
Reversing_minvalues[i]={Cut_minvalues[numpnts(

cut_minvalues)-1-i]}
Reversing_maxvalues[i]={Cut_Maxvalues[numpnts(

cut_maxvalues)-1-i]}
string newname=cut_indexedNames[numpnts(

cut_indexednames)-1-i]
Reversing_Names[i]={newname}
i+=1

while(i<numpnts(cut_minvalues))
WeReversed=1
duplicate/o Reversing_minvalues, Cut_minvalues
duplicate/o Reversing_Maxvalues,Cut_maxvalues
duplicate/o/t Reversing_names,Cut_Indexednames
Killwaves Reversing_minvalues,reversing_maxvalues,Reversing_names

endif

Make/o/n=1 Reversal_Index

variable C=0
Do

if(c==numpnts(cut_minvalues)-1)
Reversal_Index[c]={r}
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break
endif

thisminvalue = Cut_minvalues[c]
nextminvalue= Cut_minvalues[c+1]

If(abs(thisminvalue-nextminvalue)<=(7/16)*deltaH)
reversal_index[c]={r}

else

reversal_index[c]={r}
r+=1

endif
c+=1
while(1)

print "Does it look good? If so, Move on to run TimeEqualizer()!"
Print "If not, just change some threshold parameters and try again!"
end
%

A.3.3 MATCHING TIME AXES

#pragma rtGlobals=3 // Use modern global access method and
strict wave access.

Function timeEqualizer()

variable v_value
variable i=0

string timelocationa="Root:Timewaves_A"
string timelocationb="Root:Timewaves_B"
string wavelocationa="Root:A_waves"
string wavelocationb="Root:B_waves"
setdatafolder $(TimelocationA)
String TimelistA=wavelist("*",";","")
setdatafolder $(TimelocationB)
String TimelistB=wavelist("*",";","")
setdatafolder $(WavelocationA)
String ListA=wavelist("*",";","")
setdatafolder $(WavelocationB)
String ListB=wavelist("*",";","")
setdatafolder root:

Do

string TimeNameA = Stringfromlist(i,TimelistA)

if(strlen(timenameA)==0)
Break
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endif

Wave TimeWaveA= $(TimeLocationA+":"+"’"+TimenameA+"’")

string NameA = Stringfromlist(i,listA)
Wave waveA= $(waveLocationA+":"+"’"+nameA+"’")

string TimeNameB= Stringfromlist(i,TimelistB)
Wave timewaveB= $(TimeLocationB+":"+"’"+TimenameB+"’")

string NameB = Stringfromlist(i,listB)
Wave waveB= $(waveLocationB+":"+"’"+nameB+"’")

Variable MinA= Wavemin(timewaveA)
variable MinB=wavemin(timewaveB)
variable LargerMin = max(mina, minb)

if(Mina/Largermin==1)
Findvalue/T=.0005/v=(largermin) TimewaveB
deletepoints 0, v_value, TimewaveB
deletepoints 0,v_value, waveB

else
Findvalue/T=.0005/v=(largermin) timewaveA
deletepoints 0, v_value, timewaveA
deletepoints 0,v_value, waveA

endif

variable pointsA=numpnts(TimewaveA)
variable pointsB=numpnts(TimewaveB)

If(pointsA!=pointsB)
if(pointsb>PointsA)

deletepoints pointsA, (pointsB-pointsA),
timewaveB

deletepoints pointsA, (pointsB-pointsA),
waveB

Else
deletepoints pointsB, (pointsA-pointsB),

timewaveA
deletepoints pointsB, (pointsA-pointsB),

waveA
Endif

endif

i+=1

while(1)
Print "YouR TIMES HAVE BEEN EQUALIZED!"
Print "Run cutterAndSorter() next ’_’"

end
%
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A.3.4 FORC AVERAGING AND GROUPING

#pragma rtGlobals=3 // Use modern global access method and
strict wave access.

Function CutterAndSorter()
variable Mover=0
variable i=0
variable R=1
wave reversal_index
string Foldera= "A_waves"
String FolderB= "B_waves" //This procedure

uses the Reversal_index wave from the previous prcedure to group
String TimeA="Timewaves_A" //All waves by which

reversal field they are associated with and take an average. A bad
Reversal index wave

String TimeB="Timewaves_B" // can make this bad. If
we are using the multi-batch Loading from Forc, You need to change

string folderpathstringa //the
reversal indicies somehow

string folderpathstringb,oldfolder
string FolderPathStringTimeA
String FolderPathStringTimeB
variable v_value,R_offset
wave/t cut_indexednames
//Introduce an R offset? so that when naming, they end up written as

the correct reversal? right here!?
Prompt R_offset, "Is the first reversal 1 or is it something else?"
Doprompt "Input the starting Reversal (even if it’s 1)", R_offset
R_offset -=1 //R_offset, is actually going to be 1 less than the input

value?
//eg. if the last reversal was 34, then the offset would want me to

start naming at 35, instead of 1, so i would say the first
reversal is 35

// and it would take 35-1=34 and add 34 to the index, so instead of 1,
i would get 34+1=35

Do

FolderPathStringB= "root:B_waves:R_"+num2str(reversal_index[i
]+R_offset)

if (datafolderexists(folderpathstringB)!=1)
Newdatafolder $(folderpathstringB)
FolderPathStringA= "root:A_waves:R_"+num2str(

reversal_index[i]+R_offset)
Newdatafolder $(folderpathstringA)

// FolderPathStringTimeA= "root:Timewaves_a:R_"+num2str(
reversal_index[i]+R_offset)

// Newdatafolder $(folderpathstringTimeA)
// FolderPathStringTimeB= "root:Timewaves_B:R_"+num2str(

reversal_index[i]+R_offset)
// Newdatafolder $(folderpathstringTimeB)
endif
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i+=1
while(i<numpnts(reversal_index))

i=0
//setdatafolder root:timewaves_A
//String TimelistA=wavelist("*",";","") //I think it’s easier to move

all the waves then do killwaves/a to all the stragglers!
//setdatafolder root:Timewaves_B
//string timelistB=wavelist("*",";","")
setdatafolder root:A_waves
string ListA=wavelist("*",";","")
setdatafolder root:B_waves
string listB=wavelist("*",";","")
setdatafolder root:

prompt OldFolder, "yes or no"
doprompt "Have you already put waves in reversal Folders?", oldfolder

if(stringmatch(oldfolder,"no")==1)
Do
//the index of the reversal and the index of the name are shared, so i

can build a matchstring to put the file in the right folder
//=reversal_index[i]
//which wavename are we trying to move

string NameOfMover=cut_indexednames[i]
Variable MoverIndex=Whichlistitem(NameofMover,ListB)
FolderPathStringA= "root:A_waves:R_"+num2str(reversal_index[i]+

R_offset)
//FolderPathStringTimeA= "root:Timewaves_a:R_"+num2str(reversal_index[

i]+R_offset)
//FolderPathStringTimeB= "root:Timewaves_B:R_"+num2str(reversal_index[

i]+R_offset)
FolderPathStringB= "root:B_waves:R_"+num2str(reversal_index[i]+

R_offset)

if(moverindex!=-1)
string WavenameA=stringfromlist(Moverindex,ListA)
string WavenameB=stringfromlist(MoverIndex,ListB)

// string TimeNameA=stringfromlist(Moverindex,TimeListA)
// string TimeNameB=stringfromlist(MoverIndex,TimeListB)

Movewave Root:A_waves:$(wavenameA), $(FolderpathstringA)+":"
Movewave Root:B_waves:$(wavenameB), $(FolderpathstringB)+":"

// Movewave Root:Timewaves_A:$(timenameA), $(
FolderpathstringTimeA)+":"

// Movewave Root:Timewaves_B:$(timenameB), $(
FolderpathstringTimeB)+":"

endif
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i+=1
while(i<numpnts(cut_indexednames))

endif

//setdatafolder root:timewaves_A
//killwaves/a
//setdatafolder root:timewaves_B // we clear out the folders since now

each wave is in it’s own named folder
//killwaves/a
setdatafolder root:B_waves
Killwaves/a
Setdatafolder root:A_waves
Killwaves/a
setdatafolder Root:

Variable ReversalFolders=countobjectsdfr(Root:B_waves,4)
i=0
Do

FolderPathStringA= "root:A_waves:R_"+num2str(r+R_offset)
setdatafolder FolderpathstringA
listA=wavelist("*",";","")

// FolderPathStringTimeA= "root:Timewaves_a:R_"+num2str(r+
R_offset)

// setdatafolder FolderpathstringTIMEA
// TimelistA=wavelist("*",";","")

// FolderPathStringTimeB= "root:Timewaves_B:R_"+num2str(r+
R_offset)

// setdatafolder FolderpathstringTIMEB
// TimelistB=wavelist("*",";","")

FolderPathStringB= "root:B_waves:R_"+num2str(r+R_offset)
setdatafolder FolderpathstringB
listB=wavelist("*",";","")

string pointsname=getindexedobjnamedfr($(folderpathstringa)
,1,0)

wave Pointswave=$(folderpathstringa+":"+"’"+pointsname+"’") //
since we are doing averaging, this pretty much sets the
denominator in which we

//divide each sum by. It seems liek it wouldn’t be too hard to just do
this for each wave in case they have different numbers of points.

variable Points=numpnts(pointswave)
variable denominator= countobjectsdfr($(folderpathstringA),1)
setdatafolder root:
i=0

Do
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string ReversalName="R_"+num2str(r+R_offset)

if(i==0)

string AvgNameA="root:A_waves:"+reversalname
string AvgNameB="root:B_waves:"+reversalname

// string AvgNameT_B="root:Timewaves_B:"+
reversalname

// string AvgNameT_A="root:Timewaves_A:"+
reversalname

Make/n=(points)/o $(AvgNamea)=0
Make/n=(points)/o $(AvgNameB)=0

// Make/n=(points)/o $(AvgnameT_B)=0
// Make/n=(points)/o $(AvgnameT_A)=0

wave avgwavea= $(AvgNamea)
wave avgwaveB=$(AvgNameB)

// wave avgTimeA=$(AvgNameT_A)
// wave avgTimeB=$(AvgNameT_B)

endif

if(strlen(stringfromlist(i,lista))==0)
avgwavea=avgwavea/denominator
avgwaveb=avgwaveb/denominator

// avgTimea=avgtimea/denominator
// avgtimeb=avgtimeb/denominator

break
endif

string activename=folderpathstringA+":"+"’"+
stringfromlist(i,lista)+"’"

wave activewave=$(activename)

avgwavea=Avgwavea+activewave

activename=folderpathstringB+":"+"’"+stringfromlist(i,
listB)+"’"

wave activewave=$(activename)
avgwaveB=AvgwaveB+activewave

// activename=folderpathstringTIMEA+":"+"’"+stringfromlist
(i,Timelista)+"’"

// wave activewave=$activename
// avgTimea=AvgTimea+activewave

// activeName=folderpathstringTimeB+":"+"’"+stringfromlist
(i,TimelistB)+"’"

// wave activewave=$activename
// avgTimeB=AvgTimeB+activewave

i+=1
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while(1)
r+=1

while(R<=reversalfolders)
Print "now That all the files are averaged appropriately, you might

want to look into smoothing those X -Axis field waves"
print "With Smoother() and then move onto osciForcNorm()"
end

//Look at the name of the file, then move it to the folder of
folderpathstring

%

A.3.5 SMOOTHER AND REPLACER

#pragma rtGlobals=3 // Use modern global access method and
strict wave access.

function Smoother()
string LoessOrBox

Execute "CreateBrowser prompt=\"Find the folder with the waves to be
smoothed\", showWaves=0, showVars=0, showStrs=0" //asks you to
find a wave, who’se path is stored as S_browserlist

SVAR S_BrowserList=S_BrowserList //no clue why this is here
variable pathlength =strlen(s_browserlist) //length, in

numbers, of the path name.
string FieldLocation= s_browserlist[0,pathlength-2] //cuts

thesemicolon from the path name
string fieldname
variable i=0
variable dontstartatzero=1
variable/g boxsize=10
variable/g ender=0
string/g process ="Smooth"
Setdatafolder \$(fieldlocation)
string Fieldlist=wavelist("*",";","")
setdatafolder root:
string SmoothedFolder=FieldLocation+":SmoothedFields"
dfref SmoothedFolderDfref =\$(smoothedfolder)

if(datafolderexists(smoothedFolder)==0)
Newdatafolder \$(smoothedFolder)

endif
if(whichlistitem("SmoothOperator",winlist("*",";","Win:64"))!=-1)

killwindow SmoothOperator
elseif(whichlistitem("FitManager",winlist("*",";","Win:64"))!=-1)

killwindow FitManager
endif

Prompt LoessorBox, "Loess Or Box Smoothing",popup "Loess;Box"
DoPrompt "Loess or Box smoothing?" , LoessOrBox
prompt Dontstartatzero, "Which wave is up next?"
doprompt "Did you stop in the middle of a run, which wave should we

start on", Dontstartatzero
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i=dontstartatzero-1

do
fieldname= fieldlocation+":’"+stringfromlist(i,

fieldlist)+"’"

if(strlen(stringfromlist(i,fieldlist))
==0)

break
endif

wave fieldwave=\$fieldname
if(stringmatch(Process,"Smooth") ==1)

String SmoothedName=SmoothedFOlder+":"+"’S_"+
nameofwave(fieldwave)+"’"

duplicate/o \$fieldname, \$SmoothedName
wave smoothedwave=\$smoothedName

endif
if(whichlistitem("SmoothingGraph",winlist

("*",";",""))==-1) //if the window isn’t
there, make one

Display/N=SmoothingGraph/w
=(300,300,1500,1000) fieldwave

endif

//gotta do "if trace exists" kinda thing here. Only puts the
trace on the graph if it isn’t there already. Had issues of
this making 100000 copies of the same trace.

String NameOfGraphTraces = TraceNamelist("
SmoothingGraph",";",1)

variable TraceonGraph=strsearch(NameofGraphTraces,
nameofwave(Smoothedwave),0)

//print traceongraph
if(traceongraph==-1)

appendtograph/c=(1,1,50000)/w=
SmoothingGraph Smoothedwave

endif

if(stringmatch(Process,"Smooth") ==1)

if(Stringmatch(LoessorBox,"Loess"))
Loess/v=0/N=(Boxsize) srcwave=Smoothedwave

else
Smooth/B boxsize, Smoothedwave

endif
elseif (stringmatch(Process,"Fit") ==1)

if(ender==4)
variable j=0
Curvefit/q/L=(pcsr(B)-Pcsr(A)+1)/Nthr=0

Exp_XOffset smoothedwave[PCSR(A),PCSR(B)] /D
Make/o/N=(numpnts(smoothedwave)) ExtendedFit =

nan
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wave w_coef
ExtendedFit[0,pcsr(c)-pcsr(a)+1] = W_coef(0)+

W_coef(1)*exp(-(x/w_coef(2)))
make/n=(numpnts(smoothedwave))/o

ExtendedFit_offset=nan
Do

extendedfit_offset[j+pcsr(a)]=
extendedfit[j]

j+=1
while(j+pcsr(a)<=pcsr(c))

Appendtograph/c=(0,0,4000) extendedfit_offset
elseif(ender==3) //replaceing wave with fit

variable p=0
//String NameofFit = "fit_"+Nameofwave(

smoothedwave)
//wave fitwave= \$nameoffit
Do

smoothedwave[Pcsr(A)+p]=
extendedfit_offset[p+pcsr(a)]

p+=1
while(Pcsr(A)+P<=Pcsr(C))
removefromgraph/w=smoothingGraph

extendedfit_offset
// killwaves extendedfit,extendedfit_offset
endif

endif

if(stringmatch(Process,"Smooth") ==1)//Topdown programminglul.
So you can do multiple fits in a row

doupdate /w=smoothingGraph
NewPanel /W=(150,50,450,239)
DoWindow/C SmoothOperator// set to an unlikely name
DrawText 43,23,"Smoothing Factor"
SetVariable setvar0,pos={27,49},size={126,17},limits={-

Inf,Inf,1}
SetVariable setvar0,value= root:Boxsize
Button button0,pos={30,80},size={180,20}
Button button0,proc=ReplaceValue ,title="Try this value

"
Button button1,pos={30,100},size={180,20} ///These

Functions are in the ButtonDemo() procedure (proceed
replacevalue and leaving)

Button button1,proc=Proceed,title="This is fine. Next
!!!"

Button button3,pos={30,120},size={210,20}
Button button3,proc=Proceed2Fits,title="Looks good,

Proceed to fitting"
Button button2,pos={30,140},size={180,20}
Button button2,proc=Leaving,title="End this Run..NOW"
pauseforuser smoothoperator, smoothinggraph

elseif(stringmatch(Process,"Smooth")==0)
//begin a new panel for doing the fitting stuff and
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have it all here
doupdate /w=smoothingGraph
NewPanel /W=(150,50,450,260)
DoWindow/C FitManager// set to an unlikely name
showinfo/cp=0/w=SmoothingGraph // Shows the cursor

selection so that I can pick a range to fit within.
DrawText 43,23,"Place Cursors A,B, C, and Proceed"
Button button0,pos={30,80},size={215,20}
Button button0,proc=FitWithCursors ,title="Fit Using

Cursor Bounds"
//Button button4,pos={30,100},size={215,20}
//Button button4,proc=theextracursor,title="Cursors Are

placed for extended fit"
Button button1,pos={30,120},size={215,20} ///These

Functions are in the ButtonDemo() procedure (proceed
replacevalue and leaving)

Button button1,proc=ReplaceWithFit,title="Replace Field
Piece With Fit Piece"

Button button3,pos={30,140},size={215,20}
Button button3,proc=Proceed,title="Next Field Wave

Please"
Button button2,pos={30,160},size={215,20}
Button button2,proc=Leaving,title="End this Run..NOW"
Checkbox Check1,pos={30,180}
checkbox check1, Proc=ShowCD,title="show cursors C and

D"
pauseforuser Fitmanager, smoothinggraph

endif
if(ender==1) //to end program

//killwindow SmoothingGraph
abort

elseif(ender==2) //to move to next graph to fit

killwindow SmoothingGraph
i+=1

//elseif(ender==3)//if we are keeping the same graph
but now looking at the Fit Stuff

endif

while(1)
Print "Now run the OsciForcNorm() with your new smoothed x-

Axes"
end

These are functions associated with the smoother button panel.
Function Proceed2Fits(CtrlName) : ButtonControl

string ctrlName

variable/g ender= 0 //to just return to operating on the same wave,
but changing process to smooth switches button panel
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string/g process= "Fit"
if(whichlistitem("SmoothOperator",winlist("*",";","Win:64"))!=-1)

killwindow SmoothOperator
elseif(whichlistitem("FitManager",winlist("*",";","Win:64"))!=-1)

killwindow Fitmanager
endif

end

Function FitWithCursors(CtrlName) : ButtonControl
string ctrlName

variable/g ender= 4 //to just return to the same loop after fitting
string/g process= "Fit"
if(whichlistitem("SmoothOperator",winlist("*",";","Win:64"))!=-1)

killwindow SmoothOperator
elseif(whichlistitem("FitManager",winlist("*",";","Win:64"))!=-1)

killwindow Fitmanager
endif

end

Function ReplaceWithFit(CtrlName) : ButtonControl
string ctrlName

variable/g ender= 3 //if you just did a fit, liked it, then clicked to
have it replace a piece of wave. In which this will re-direct

//you to a process where we make a duplicate wave, and replace the
points with tthe fit, then look at that wave instead

string/g process= "Fit"
if(whichlistitem("SmoothOperator",winlist("*",";","Win:64"))!=-1)

killwindow SmoothOperator
elseif(whichlistitem("FitManager",winlist("*",";","Win:64"))!=-1)

killwindow FitManager
endif

end

Function ThatExtraCursor(CtrlName) : ButtonControl //this is going to
have to do with the 3rd cursor thingie for better fits *Beanface*

string ctrlName

variable/g ender= 4 //to just return to the same loop after fitting
string/g process= "Fit"
if(whichlistitem("SmoothOperator",winlist("*",";","Win:64"))!=-1)

killwindow SmoothOperator
elseif(whichlistitem("FitManager",winlist("*",";","Win:64"))!=-1)

killwindow Fitmanager
endif

end
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function showcd(ctrlname,checked) : checkboxcontrol
string ctrlname
variable checked
variable/g ender=0
if (checked==1)

showinfo/cp=1/w=SmoothingGraph
else

showinfo/cp=0/w=SmoothingGraph

endif
end

A.3.6 NORMALIZING FORC DATA

#pragma rtGlobals=3 // Use modern global access method and
strict wave access.

function OsciForcNorm()
// It seems like the waves are pretty well "normalized" withought

having todivide them by different factors. I think a simple
// offset will be good enough to make an accurate first graph. Ideally

I want to just have the option of doing one or the other
//Need a selector early, then just an if here and there to include

certain calculations.
//select a wave
//for each point, check to see if each of the 500 points following (

with 10 possible booboos?)
//are monatonically increasing
variable v_value
make/N=1/o ReversalFieldValues
make/n=1/o ReversalIndexedLocation
variable g=0
variable/g OldIndex = 0
variable/g root:lazy
nVar lazy = root:lazy
//We can run this with different ranges of reversals, but we intend to

always have them normalized to the most outer one. I think we can
just have

//cutter and sorter que up all the averages to use. Might not have to
change this one.

//I would like to preserve the Full Waves, not just reversals, so i
can see the decreasing field behaviour

Execute "CreateBrowser prompt=\"Find the folder with Magnetic FIeld
Waves\", showWaves=1, showVars=0, showStrs=0" //asks you to find a
wave, who’se path is stored as S_browserlist
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SVAR S_BrowserList=S_BrowserList //no clue why this is here
variable pathlength =strlen(s_browserlist) //length, in numbers, of

the path name.
string FieldLocationA= s_browserlist[0,pathlength-2] //cuts

thesemicolon from the path name

Execute "CreateBrowser prompt=\"Find the folder with Kerr Rotations\",
showWaves=1, showVars=0, showStrs=0" //asks you to find a wave,

who’se path is stored as S_browserlist
SVAR S_BrowserList=S_BrowserList //no clue why this is here
variable pathlength2 =strlen(s_browserlist) //length, in numbers, of

the path name.
string waveLocationB= s_browserlist[0,pathlength2-2] //cuts

thesemicolon from the path name

if(datafolderexists("root:NormalizedReversals")==0)
newdatafolder Root:NormalizedReversals

endif

setdatafolder \$(FieldLocationA)
string FieldListA=wavelist("*",";","")
setdatafolder Root:
setdatafolder \$(wavelocationB)
string waveListB=wavelist("*",";","")
setdatafolder Root:

Do
//Wave testwave = root:A_waves:R_2
string FieldName=FieldlocationA+":"+stringfromlist(g,

FieldListA)
string Kerrname=wavelocationB+":"+stringfromlist(g,waveListB)

if(strlen(stringfromlist(g,FieldlistA))==0)
break

endif
Wave KerrWave= \$kerrname
Wave Fieldwave = \$fieldname
variable i=0
variable p=0
variable booboos=0
variable success=0
variable stepper=0
variable maxbooboos=3

DO

Do
variable value1=fieldwave[stepper+i]

If(stepper== (numpnts(fieldwave)-40))

Display/w=(300,100,1600,1000)/N=Thegraph
fieldwave
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dowindow/f thegraph
showinfo/cp=0/w=thegraph
NewPanel /K=1 /W=(187,368,437,531) as "

Pause for Cursor"
DoWindow/C NoMinHere

// Set to an unlikely name
AutoPositionWindow/E/M=1/R=thegraph

// Put panel near the
graph

DrawText 21,20,"Adjust the cursors and
then"

DrawText 21,40,"Click Continue."
Button button0,pos={80,58},size={160,20},

title="Use Cursor Index as min"
Button button0,proc=CursorControlA
Button button1,pos={80,90},size={160,20}
Button button1,proc=Endthething2,title="

End"
Button button2,pos={80,110},size={160,20}
Button button2,proc=LazyMin,title="Use

Previous Min Index"
dowindow/f thegraph
PauseForuser NoMinHere,Thegraph

if(lazy==0)
stepper=pcsr(A,"Thegraph")
elseif(lazy==1)
stepper = oldIndex
endif
booboos=0
killwindow thegraph
Break

endif

variable value2=fieldwave[stepper+1+i]
if(value2>=value1)

success+=1
else

//print i+stepper
booboos+=1

endif

if(booboos==maxbooboos)
break

endif
i+=1

while(i<=1500 )

if(booboos<maxbooboos)
break

endif

stepper+=1
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booboos=0
success=0
i=0

while(1)

print "the start of monoatonic increase for wave "+nameofwave(
fieldwave)+" was " + num2str(stepper)

variable minfield = fieldwave[stepper]
ReversalFieldValues[g] = {minfield}
ReversalIndexedLocation[g]={stepper}
print "the field value at the min point is " + num2str(

minfield)

g+=1

while(1)
string ScaleOrShift
Prompt Scaleorshift, "offset and norm?",Popup "NormAndOffset;Offset;"
Doprompt "Will you offset this and Norm or just offset?", scaleorshift

g=0
i=0
setdatafolder root:
//What do i need?
//Need the kerr at Hr, and the Kerr at Hmax for each reversal

and the outer one.
//easy enough, lets find the outer one.

Do
If(i==0)

FieldName=FieldlocationA+":"+stringfromlist(0,
FieldListA)

wave outerfieldwave=\$(fieldname)
string outerfieldreversalName = "FieldR_1"
string OuterKerrname=wavelocationB+":"+stringfromlist

(0,waveListB) //sums the 10 points on either side of
the "min value" and averages them

wave outerkerrwave=\$outerkerrname
variable SmallestKerr=sum(outerkerrwave,

reversalindexedlocation[i]-12,
reversalindexedlocation[i]+12)/25

//print SmallestKerr
variable totalPoints=numpnts(outerkerrwave)
variable MaxestKerr=sum(outerkerrwave,totalpoints-50,

totalpoints-1)/50 //these two now yield the largest
and smallest kerr rotation values

//print maxestkerr ///
The largest is imprtant

for anchoring, and the smallest is necessary to
make the normalizing factor

variable NormFactor=(maxestkerr-smallestkerr)/2
variable offset = (maxestkerr+smallestkerr)/2
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Duplicate/o/R=[reversalindexedlocation[i],numpnts(
outerfieldwave)-1] outerfieldwave, \$(
outerfieldreversalname)

Duplicate/o outerkerrwave, \$("FULL_N_"+nameofwave(
outerkerrwave))

wave normedouter=\$("Full_N_"+nameofwave(outerkerrwave)
) // now the outer wave
is sittin pretty and normalized.

If(stringmatch(Scaleorshift, "Normandoffset")==1)
normedouter=(normedouter-offset)/normfactor

//9/30/19
else

normedouter=(normedouter-offset) //If I am just
offsetting stuff, I don’t need to normalize
it to 1, but centering it on the Y axis is "
useful"

endif

Duplicate/o/R=[reversalindexedlocation[i],numpnts(
outerfieldwave)-1] Normedouter, \$("N_"+nameofwave(
outerkerrwave))

Display Normedouter vs Outerfieldwave
doupdate
i+=1

elseif(i!=0)
variable rng1=Abs(floor(enoise(65534))) //make 3 random

r-g-b’s for graphs
variable rng2=Abs(floor(enoise(65534)))
variable rng3=Abs(floor(enoise(65534)))
string outerfieldname=FieldlocationA+":"+stringfromlist

(0,FieldListA)
FieldName=FieldlocationA+":"+stringfromlist(i,

FieldListA)
if(strlen(stringfromlist(i,FieldListA))==0)

break
endif

kerrname=wavelocationB+":"+stringfromlist(i,waveListB)
wave kerrwave=\$(kerrname)
wave fieldwave =\$(fieldname)
variable ReversalValue=sum(kerrwave,

reversalindexedlocation[i],reversalindexedlocation[i
]+12)/13

variable Maxvalue=sum(kerrwave,totalpoints-150,
totalpoints-1)/150 //this is the value
for the m(Hr) and m(Hmax)

//stil need M(Hr) and M(Hmax)(which we have already as
MaxestKerr)

variable ReversalIndex = Reversalindexedlocation[i] //
index where reversal happens for reversal field wave
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variable ReversalfieldValue= fieldwave[Reversalindex]
// the actual field value (Hr) of the reversal

If(stringmatch(Scaleorshift, "Normandoffset")==1)
Duplicate/o/r=[0,numpnts(outerfieldwave)/2]

Outerfieldwave, MinFinder //all of this to
find which kerr value is associated with the
corresponding reversal field

wave Minfinder
Minfinder= (Minfinder-Reversalfieldvalue)
wavetransform/o abs minfinder
findvalue /v=(wavemin(minfinder)) minfinder //

which index of the outer wave does the field
reach Hr

print "the reversal field of "+num2str(
reversalfieldvalue)+" occurs at point " +
num2str(v_value)+ " of the outer kerr wave"

variable OuterreversalKerr=sum(outerkerrwave,(
v_value)-3,v_value+3)/7//what kerr value is
the outerloop at when we have Hr

//we have now M(Hr), M(Hmax), m(Hr), and m(Hmax)
Variable IdealDelta = (MaxestKerr-

OuterReversalKerr)
Variable TrueDelta = (maxvalue-ReversalValue)
Variable ScalingFactor=IdealDelta/TrueDelta

//
all these variables go into normalizing. see
notebook3, pgs 6-9

variable ScaledMax = scalingfactor*maxvalue
variable scaledMin= scalingFactor*ReversalValue
variable Reversaloffset=((Scaledmax-maxestkerr)

+(scaledmin-OuterReversalKerr))/2
else

reversaloffset=Maxvalue-maxestkerr
scalingFactor=1
Normfactor=1

endif
string NormalizedReversal="N_"+nameofwave(kerrwave)
string ReversalFieldname="Field"+nameofwave(Fieldwave)
Duplicate/o Kerrwave, \$("FULL"+NormalizedReversal)
Duplicate/o/R=[reversalindexedlocation[i],numpnts(

kerrwave)-1] Kerrwave, \$(NormalizedReversal) //
Right here makes the normalized wave have just the
reversal part of the loop

Duplicate/o/R=[reversalindexedlocation[i],numpnts(
kerrwave)-1] fieldwave, \$(reversalfieldname)

wave Normalizedreversalwave= \$(NormalizedReversal)
Wave normailzedFullForc=\$("FULL"+NormalizedReversal)
Normalizedreversalwave=((((normalizedreversalwave*

ScalingFactor)-Reversaloffset)-offset)/Normfactor)
normailzedFullForc=((((normailzedFullForc*ScalingFactor

)-Reversaloffset)-offset)/Normfactor)
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//Normalizedreversalwave=((normalizedreversalwave*
ScalingFactor)-Reversaloffset)

appendtograph/C=(rng1,rng2,rng3)
Normalizedreversalwave vs \$(reversalfieldname)

doupdate
i+=1

endif
While(1)

//Now, if we are on any other loop we need Kerr(Hr) for that
loop and it’s max value, similar to what we have just done
above.

//The tricky comes when finding the value of Kerr(Hr_outerloop
) needs to be found by finding the value where the field is
closest to the Hr form the minor loop.

//and we’ll do the normalizing for each wave here
string listofKerr=wavelist("*N_R*",";","")
string listofFields=wavelist("*FieldR*",";","")
variable k=0

DO
fieldname=stringfromlist(k,listofkerr)
kerrname=stringfromlist(k,listoffields)

if(strlen(fieldname)==0)
break

endif

wave kerrwave =\$kerrname
wave fieldwave=\$fieldname
movewave kerrwave, Root:NormalizedReversals:
movewave fieldwave, Root:Normalizedreversals:
k+=1
while(1)
killwaves minfinder
end

Function CursorControlA(CtrlName) : ButtonControl
string ctrlName
//variable/G Ender=1
variable/g oldindex = pcsr(a,"TheGraph")
variable/g Lazy=0
killwindow NoMinHere
end

Function LazyMin(CtrlName) : ButtonControl
string ctrlName
variable/g Lazy =1
killwindow NoMinHere
end
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A.4 FORC ANALYSIS PROGRAMS

From a normalized set of curves, we must actually take derivatives to achieve the forc

diagram. The first is done with the FirstD() program which takes a derivative of the reversal

with respect to the applied field. This program prompts the user with a panel which allows

for the individual selection of reversals from a dropdown menu. As shown in figure 7.45,

the user can select a number of points on either side of the point being differentiated.

Figure A.2 An example of the panel prompted when taking the first derivative of raw
data.

Confirming the selection produces a graph which is a derivative, a graph of the integral

of that derivative, and a graph showing the difference between the integral and the orginal

reversal. This step is done for each reversal by hand to ensure the best looking derivitive for

each reversal. Following the first derivitive, we run SecondDPanel(), which, once again,

will prompt the user with a panel with which they can interact.
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Figure A.3 An example of the panel displayed when taking the second derivative of our
raw data for FORC.

Just like the FORC preparation, the second derivative panel also requires a workflow.

From the top, the first input allows the user to select a window size (for differentiating)

and data folder. The second button from the top will remove all NaN values if they are

remaining as artifacts from the first derivative and cut all values beyond a predetermined

field value, chosen within the program itself. Cutting endpoints helps to remove noisy

behavior from excessive points near saturation. "Interpolate the field and slopes" will ask

the user to pick a reduced amount of points to fix the field spacing, and interpolate all

reversals to only have values at the same field points so that we can remove field as an axis

as shown in figure 7.46. We remove field as an axis and create a matrix representation of

our array of first derivatives, which is the next button. This version of Igorpro (v6.38B01)

is unable to have unevenly spaced matrix indices so we insisted in the previous step that
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they are identical. We now use all the values from the first derivatives of the reversals to

build a matrix with axes Hr and Ha. From this, we proceed to the next button, which takes

the derivative ∂

∂Ha
which fits weighted linear fits along each of the equalized field values

on the matrix (along the Hr direction). This will yield a matrix which is defined as a FORC

diagram. We finally use the "create Hu and Hc matrix to make these coordinates for every

point on the matrix so we can properly plot our FORC diagram with the literature-suggested

axes, as mentioned and shown in equation 7.19.

A.4.1 FIRST DERIVATIVE PANEL

#pragma rtGlobals=3 // Use modern global access method and
strict wave access.

function FirstD()
setdatafolder Root:
variable/g Boxsize =4
variable/g CutEnds =0
variable/g Ender=0
variable/g doweights=0
string/g FieldPathName
string/g Fitype = "Linear"
variable Edge=0 //-1,0,1 for left middle right
variable i=0
string theonewindow=winlist("Buttonpanelname",";","")
if(whichlistitem("Buttonpanelname", theonewindow)!=-1)

killwindow Buttonpanelname
endif

Nvar Boxsize=root:Boxsize
Nvar cutends=root:cutends
Execute "CreateBrowser prompt=\"find the folder full of waves

to be fit (y-Waves)!\", showWaves=0, showVars=0, showStrs
=0" //asks you to find a wave, who’se path is stored as
S_browserlist

SVAR S_BrowserList=S_BrowserList //sets a global variable
variable pathlength =strlen(s_browserlist) //length, in

numbers, of the path name.
string foldername= s_browserlist[0,pathlength-2] //cuts the

semicolon from the path name
Execute "CreateBrowser prompt=\"find the folder full of Fields

(X axis)\", showWaves=0, showVars=0, showStrs=0" //asks
you to find a wave, who’se path is stored as S_browserlist

SVAR S_BrowserList=S_BrowserList //sets a global variable
variable pathlength2 =strlen(s_browserlist) //length, in

numbers, of the path name.
string foldername2= s_browserlist[0,pathlength2-2] //cuts the

semicolon from the path name
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string/g pathtoKerr = foldername+":"
string/g pathtoField = foldername2+":"
svar pathtokerr = pathtokerr
svar pathtofield=pathtofield

// setdatafolder $foldername2 CZN changed 2/18/20
setdatafolder $pathtofield //changed from the above line
string/g listofFields= wavelist("*field*",";","") //this might

be a problem? pre norm they have the same name, else i
think i append "Field" as a prefix

svar listofFields=listofFields
setdatafolder root:
string/g GListoffields = listoffields//I don’t think this

works
//later, make a button that opens the data browser and lets me

pick a new folder for both of these ^^^^ up there

NewPanel /W=(150,50,440,280)
DoWindow/C Buttonpanelname// set to an unlikely name

DrawText 43,57,"Cut EndPoints"
SetVariable setvar1,pos={27,59},size={126,17},limits={-Inf,Inf,1}
SetVariable setvar1,value= root:cutends
DrawText 43,23,"Smoothing Factor"
SetVariable setvar0,pos={27,27},size={126,17},limits={-Inf,Inf,1}
SetVariable setvar0,value= root:Boxsize
Button button0,pos={40,80},size={160,20}
Button button0,proc=Plotwaves ,title="Plot the stuff"
Button button1,pos={40,100},size={160,20}
Button button1,proc=SaveWaves,title="Save the waves"
Checkbox Check0,pos={40,120}
checkbox check0, Proc=weighting,title="Weights?"
Checkbox Check1,pos={40,140}
checkbox check1, Proc=Overwrite,title="overwrite last derivative?"
Checkbox Check2,pos={40,160}
checkbox check2, Proc=append,title="Append to Graphs?--ChangeColors"

setdatafolder $(foldername) //I dont like this, but unless i come up
with another way to construct the list of waves, im sol.

//string listofKerrs = wavelist("!*field*",";","")
//string SortedKerrs=Sortlist(listofKerrs,";")
popupmenu popup1,pos={30,180},size={150,20}, value=WaveList("!*field

*",";","")
//popupmenu popup1,pos={30,180},size={150,20}, value=SortedKerrs
popupmenu popup1,proc=Pickwave, title="pick a wave"
popupmenu popup2,pos={30,200},size={150,20}, value="Linear;Polynomial"
popupmenu popup2,proc=Fitstyle, title="Which Fit Style"

end

Function/S PickWave(ctrlName,popNum,popstr) : PopupMenuControl
String ctrlName
variable popnum
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string popstr
string/g pathtokerr
string /g pathtofield
string /g listofFields
variable/g cutends
svar pathtokerr =root:pathtokerr
svar pathtofield = root:pathtofield

svar glistoffields =root:glistoffields

string KerrName
kerrname =nameofwave($(pathtokerr+popstr)) //when we select

the kerr rotation, we also need the corresponding X wave.
//If i had time to fuck with this, I would have a check box to

optionally let you just pick the X wave from a dropdown
menu...

print kerrname
variable StartTheName=strsearch(kerrname,"R_",0) // attempts

to pull out when R_ starts in the string. now we have to
look at R_XXX and descriminate

string NametoMatch= kerrname[Startthename,strlen(kerrname)-1]

print "the name to match is " + nametomatch
variable i=0
DO //NEED TO LOOK IN THE WAVE FOLDER AND Try to find

the corresponding X wave (field wave) based on the
nametomatch

string listitem = stringfromlist(i,glistoffields
)

//if the ideal match string matches the simlar
part---> the end of the name of the x wave,
they match???

if(stringmatch(listitem,"*"+nametomatch)
==1)

print "The matching field is " +
nameofwave($listitem)

break
else

i+=1
endif

WHILE(1)
string/g fullkerrname = pathtokerr+popstr //full path to the

wave that we are looking at
string/g fullfieldname = pathtofield+listitem
svar fullfieldname =fullfieldname
svar fullkerrname =fullkerrname
print "the field is at " +pathtofield+listitem
print "the kerr is at "+pathtokerr+popstr

end

Function/S Fitstyle(ctrlName,popNum,popstr) : PopupMenuControl
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String ctrlName
variable popnum
string popstr
string/g root:Fitype
svar fitype=root:fitype

if(stringmatch(popstr,"Linear")==1)
fitype="Linear"

elseif(stringmatch(popstr,"Polynomial")==1)
fitype="Polynomial"

endif

end

Function Plotwaves(ctrlname) : Buttoncontrol //Within this wave, we
will calculate slopes and plot them

string ctrlName
string/g fullfieldname
string/g fullkerrname
string/g fitype
nvar boxsize = root:Boxsize
nvar weightvalue = root:doweights
svar fitype=root:fitype
variable i=0
variable width = boxsize
variable totalpoints = numpnts($(fullkerrname))
Variable WidthR= ceil(Width/2)
Variable WidthL = ceil(Width/2)
variable edge=0

Nvar cutends = root:cutends

If(datafolderexists("Root:FirstDerivative")!=1)
newdatafolder Root:FirstDerivative

endif
if(weightvalue==0)

String DsName="Root:FirstDerivative:D1_"+num2str(Width)
+"pts_"+Nameofwave($fullkerrname) //prefix as is so
that when the actual wave is made, it is put into
that folder

else
DsName="Root:FirstDerivative:D1_W_"+num2str(Width)+"

pts_"+Nameofwave($fullkerrname) //prefix as is so
that when the actual wave is made, it is put into
that folder

endif
Make/o/n=(totalpoints) $DsName=nan //makes a wave with above

prefix (D1, indicating the first derivative) into the
folder differentiating, for easier cleanup later

Wave DsWave = $DsName
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Wave TheWave=$fullkerrname //the original wave that will be
differentiated

wave THeFieldWave = $fullfieldname
//print width

Do
//Make/o/n=((2*Width)+1) NewFittywave //this is the wave where the to-

be-fit-by-line points will be and this will be overwritten every
interation

if(i<widthR&&i<totalpoints/2)
//if there are not enough points to the LEFT of the

point we are looking at, start at 0

Duplicate/o/r=[0,i+widthR] Thewave Realfittywave
Duplicate/o/r=[0,i+widthR] TheFieldwave RealfittyField
edge=-1

elseif(i+cutends<widthR&&i>totalpoints/2)
//if there are not enough points to the

Right of the point that we are looking , end at the last
point

Duplicate/o/r=[i-widthL, totalpoints-1] Thewave
Realfittywave

Duplicate/o/r=[i-widthL, totalpoints-1] TheFieldwave
RealfittyField

edge=1
else

edge=0
Duplicate/o/r=[i-widthL,i+widthR] Thewave Realfittywave
Duplicate/o/r=[i-widthL,i+widthR] TheFieldwave

RealfittyField
endif

wave NewFittywave= Realfittywave//Wave variable within the
code containing the to be fit potion of points

wave newfittyField = Realfittyfield //x axis

If(stringmatch(fitype,"Linear")==1)
if(weightValue==0)

Curvefit/N/Q line newfittywave /x=newfittyfield
elseif(weightValue==1)

//middle point should just always be (numpnts(
realfittywave)-1)/2 since numpnts is always odd

//eg. if there are 5 points, than middle index (0 1 2 3
4) is 2, (5-1)/2=2

//first index is always 0.
variable n=0 //index for finding radii
variable Middleindex=(numpnts(realfittywave)-1)/2
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Variable R
if(edge==-1) //use unweighted becasue weird

edgebehaviour
variable middley=newfittywave[0] //if we are

leftbound
variable middlex=newfittyfield[0]

elseif(edge==1)
middley=newfittywave[numpnts(realfittywave)-1]

//if we are rightbound
middlex=newfittyfield[numpnts(realfittywave)-1]

elseif(edge==0)
middley=newfittywave[middleindex] //if we are

in the middle
middlex=newfittyfield[middleindex]

endif
variable Rmin,Rmax, Stdev

Do //find the R values from each point to the middle
if(edge==-1) //suspected messy edgebehaviour

messing up integration, use no weight at edge

break
endif

//R=(((newfittywave[n]-middley)^2)+((newfittyfield[n]-middlex)
^2))^1/2

R=((newfittyfield[n]-middlex)^2)^1/2 //just the abs value of x
distances

if(n==0)
make/o/n=(0) root:RadialDistances //have

this made somewhere nice.....
wave radialdistances = root:

radialdistances
radialdistances[0]={R}

// display RadialDistances
//doupdate

else
radialdistances[n]={R}
//doupdate

endif

n+=1

while(n<numpnts(realfittywave))

if(edge!=-1)
duplicate/o newfittywave, weights
weights=0
Rmin = wavemin(radialdistances)
Rmax=wavemax(radialdistances)
stdev=Sqrt((-(Rmax-Rmin)^2)/(2*ln(.1))) //using

the distribution of radial distances to
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create a resized gaussian.
//the farthest point is assigned to the

location of the gaussian where we have
10% of the total value

n=0

do
Weights[n]=Exp((-(RadialDistances[n]-Rmin

)^2)/(2*(stdev^2)))
n+=1

while(n<numpnts(radialdistances))

Curvefit/N/Q line newfittywave /x=
newfittyfield/i=0/w=weights

else
Curvefit/N/Q line newfittywave /x=

newfittyfield
endif

endif

//if(i==floor(1302))
//break
//endif

wave w_coef
variable slope = w_coef[1] //variable slope for the linear fit

elseif(stringmatch(fitype,"Polynomial")==1)
if(weightValue==0)

Curvefit/N/Q poly_Xoffset 3, newfittywave /x=
newfittyfield //polyfit to the subset of the wave.

//Need to take "differentiate" of the wave at the point
of interest. Since the curvefit uses 200? points by
default, i have to locate the right

//point within the differentiated wave and save that
data to the

elseif(weightValue==1)
endif
// slope= //the dot thing from the differentiate funtion

endif

//wave w_coef

Dswave[i]=slope
i+=1

while(i<(totalpoints-cutends))

//gotta make evevrything append to the same graph
//killwaves realfittyfield, realfittywave w_coef//,w_sigma
dowindow /k Derivative
display/N=Derivative/w=(0,0,1000,250) Dswave vs thefieldwave
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//gotta get the integrated wave to be offset to be ontop of the
original wave so i dion’t have to drag it manually

setaxis bottom *,Wavemax(thefieldwave)*.95 //so the graph doesn’t get
autoscalled to the awful end behavior

setaxis/a=2 left
string integralname= "I_"+nameofwave(dswave)
integrate/meth=1 Dswave/x=thefieldwave/d=$integralname
dowindow/k integral
wave integralwave=$integralname

display/n=integral/w=(0,279,1000,750) $integralname vs thefieldwave
String visibleTraces=TraceNameList("",";",1+4) // only visible normal

traces
string tracename = stringfromlist(0,visibletraces)
doupdate /w=integral
modifygraph rgb($tracename) =(0,0,65000)
appendtograph thewave vs thefieldwave
dowindow/k difference //kills trace on graph if it is there..i think
wave integratedwave = $integralname
duplicate/o integratedwave,Thedifference
duplicate/o/r=[0,numpnts(integratedwave)-1] thewave, reducedWave
thedifference= integratedwave-reducedwave
display/n=difference/w=(0,752,1000,1000) thedifference vs thefieldwave

end

function overwrite(ctrlname,checked) : checkboxcontrol
string ctrlname
variable checked
if (checked==1)

print "ka-check"
else

print "ka-uncheck"
endif

end

function weighting(ctrlname,checked) : checkboxcontrol
string ctrlname
variable checked
variable/g Doweights
nvar doweights= root:doweights
if (checked==1)

print "ka-check, Radial Gaussian Weighting is enabled!"
Doweights=1

else
print "ka-uncheck, Radial Gaussian Weighting is

Disabled"
Doweights=0

endif
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end

Function Savewaves(ctrlname) : Buttoncontrol //Save the stuff that is
currently Displayed into a folder

string ctrlName
string/g fullfieldname
string/g fullkerrname
string/g fitype
string nameofgraph ="Derivative"

if(datafolderexists("Root:DerivativesForForcAnalysis")==0)
Newdatafolder/o Root:DerivativesForForcAnalysis

endif

string Tracename=Tracenamelist(nameofgraph,";",1+4)
tracename=tracename[0,strlen(tracename)-2]

wave wavepath=Tracenametowaveref(nameofgraph,Tracename)
string fullpath =Getwavesdatafolder(wavepath, 2)

Duplicate/o $fullpath, root:DerivativesForForcAnalysis:
$tracename //at this point we will have thigs saving, but
they might not necissarily be a nice naming

Print tracename + " Has been saved"//convention, so we can
mess with that later.

end
//

A.4.2 SECOND DERIVATIVE PANEL

#pragma rtGlobals=3 // Use modern global access method and
strict wave access.

Function SecondDPanel()
setdatafolder root:
string listoWindows= winlist("secndDPanel",";","")
variable windowexists =strsearch(listowindows,"secndDPanel",0)
if(windowexists!=-1)
killwindow secndDPanel
endif
variable/g range= 300
variable/g Boxsize =4
NewPanel /W=(150,50,540,500)
DoWindow/C secndDPanel// set to an unlikely name
//DrawText 43,23,"Smoothing Factor"
//SetVariable setvar0,pos={27,49},size={126,17},limits={-Inf,Inf,1}
//SetVariable setvar0,value= root:Boxsize
Button button0,pos={10,60},size={350,50}
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Button button0,proc=SecondDprep ,title="Reduce The field and Slope
Waves by peeling\r endpoints and zapnans"

Button button1,pos={10,125},size={350,20}
Button button1,proc=Samesteps,title="Interpolate The field and slopes"

Button button3,pos={10,145},size={350,20}
Button button3,proc=matrixUp,title="make the matrix of slopes"

button button5, pos={10,165},size={350,20}
Button button5,proc=SecondDman, title = "Do IT, DO THE 2nD DERIVATIVE

!!!"
DrawText 43,23,"Smoothing Factor"
SetVariable setvar0,pos={27,27},size={126,17},limits={-Inf,Inf,1}
SetVariable setvar0,value= root:Boxsize
button button6, pos={157,22},size={150,22}
Button button6,proc=Setdatafolderdude, title = "Pick The DataFolder"
DrawText 43,180,"(+/-)ContrastRange"
SetVariable setvar1,pos={27,200},size={126,17},limits={-Inf,Inf,1}
SetVariable setvar1,value= root:range
button button7, pos={153,200},size={190,22}
Button button7,proc=contrast, title = "Change Matrix Contrast"
button button8, pos={153,225},size={190,22}
Button button8,proc=changeaxestest, title = "Create Hu and Hc Matrix"
Button button9,pos={10,250},size ={350,20}
button button9, proc=ReducePointNumber, title="Reduce Point Density-

Not functional"
Button button10,pos={10,270},size ={350,20}
button button10, proc=GizmoGussy, title="Gussy up the Gizmo"
Button button2,pos={150,400},size={200,40}
Button button2,proc=killwavez,title="Empty ’’reduced’’ folders"
button button4, pos={20,400},size={100,40}
Button button4,proc=HELPME, title = "??Help??"
//setdatafolder $(foldername) //I dont like this, but unless i come up

with another way to construct the list of waves, im sol.
//popupmenu popup1,pos={30,180},size={150,20}, value=WaveList("!*field

*",";","")
//popupmenu popup1,proc=Pickwave, title="pick a wave"
//Procedure "pickwave" is in th "Firstderivativefromslopes.ifp, which

is executed with firstd()
//pickwave requires a path to a folder containinf field_xxxx and one

containting non-fields
//The field path is the same as the path from firstd(), so we continue

to use the Glistoffields global variable.
end

function secondDprep(ctrlname):buttonControl

string ctrlname
string/g Glistoffields // = this is the wavelist of fields from the

Firstd() program
string/g pathtofield
svar pathtofield=root:pathtofield
//svar fieldlist=glistoffields
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//need a path to the fields
//selecta folder with the slopes in it
Execute "CreateBrowser prompt=\"find the folder full of slopes (y-

Waves)!\", showWaves=0, showVars=0, showStrs=0" //asks you to find
a wave, who’se path is stored as S_browserlist

SVAR S_BrowserList=S_BrowserList //sets a global variable
variable pathlength =strlen(s_browserlist) //length, in

numbers, of the path name.
string foldername= s_browserlist[0,pathlength-2] //cuts the

semicolon from the path name
string/g path2slopes= foldername+":"
setdatafolder $(path2slopes)
string listofslopes = wavelist("!*Field*",";","")
setdatafolder root:

Execute "CreateBrowser prompt=\"find the folder full of field waves (x
-Waves)!\", showWaves=0, showVars=0, showStrs=0"

SVAR S_BrowserList=S_BrowserList //sets a global variable
pathlength =strlen(s_browserlist) //length, in numbers, of the

path name.
foldername= s_browserlist[0,pathlength-2] //cuts the semicolon

from the path name
string/g path2fields= foldername+":"
setdatafolder $(path2fields)
string fieldlist = wavelist("*field*",";","")
setdatafolder root:

if(datafolderexists("Root:reducedfieldwaves")==0)
newdatafolder Root:reducedfieldwaves
endif
if(datafolderexists("Root:reducedslopes")==0)
newdatafolder Root:reducedslopes
endif

//At this point i think i am going to go through every slope wave and
replace the points past 3.6 kG with nan, then zap em

//zapnans on all waves in slopes....count the number of points that
you had to cut.

//insist that the new field wave will have the same number of points
as the zapped wave

variable i=0
do

variable p=0
variable m=0

if (strlen(stringfromlist(i,fieldlist))==0) //ends
program once we don’t have more waves

break
endif

do //this loops looks like it looks through the name to see if
it has "R_" in it, which indicates that it’s part of the

actual forc data.
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string fieldname=stringfromlist(i,fieldlist)
variable StartTheName=strsearch(fieldname,"R_",0) //

attempts to pull out when R_ starts in the string.
now we have to look at R_XXX and descriminate

if(strlen(fieldname)==0)

variable Breaker=1 //secondary break condition,
beccause of nested loops

break
endif

if(startthename==-1)
i+=1

endif

while (startthename==-1) //keep going while it doesn’t match

if (breaker==1)
break

endif

string FullpathtoFieldWave=pathtofield+stringfromlist(i,
fieldlist) //we have moved i a bit from the previous loop,
so now what is the wave taht is actually R_something

wave fieldwave=$(path2fields+stringfromlist(i,fieldlist)) //if
there are extra waves in the folder that don’t have

r_something in them
fieldname=nameofwave(fieldwave)
string pathtoReducedWave ="Root:reducedfieldwaves:"+nameofwave

(fieldwave)
duplicate/o fieldwave, $(pathtoreducedwave)
wave reducedfield=$(pathtoreducedwave)

print "the name to match is "+ fieldname
DO //NEED TO LOOK IN THE WAVE FOLDER AND Try to find

the corresponding X wave (field wave) based on the
nametomatch

string NametoMatch= fieldname[Startthename,
strlen(fieldname)-1] //I believe this just
matches the R_XXX since all my waves are
Prefix_R_XXX

string listitem = stringfromlist(m,listofslopes)
//if the ideal match string matches the simlar

part---> the end of the name of the x wave,
they match???

if(stringmatch(listitem,"*"+nametomatch)
==1) // now that we have a field
selected that has R_xxx , this loop
searches through the list of slopes
for a matching

print "The matching kerr is " +
listitem //
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suffix. If there are multiple,
it will grab the first one.

break
else

m+=1
endif

WHILE(1)

string FullpathtoSlopeWave=path2slopes+listitem
wave slopewave=$(fullpathtoslopewave)
string pathtoReducedslope ="Root:reducedslopes:"+listitem

//delete the same index - worth of
points so that both wave contain data UNTIL .36 kg

duplicate/o slopewave, $(pathtoreducedslope)
wave reducedslope=$(pathtoreducedslope)
if (i==12)

print num2str(i)
endif
do

if(reducedfield[p]>=.36||stringmatch(num2str(
reducedfield[p]),"NaN")==1||stringmatch(num2str(
reducedfield[p]),"nan")==1)

reducedfield[p]=nan
reducedslope[p]=nan

endif
p+=1
while(p<numpnts(reducedfield))
wavetransform/o zapnans, reducedfield
wavetransform/o zapnans, reducedslope

i+=1
while(1)
//Now, using the spacing variable, take each fieldwave and do the

thing to it.
//idealfieldspacing
end

function samesteps(cooteroool) : Buttoncontrol
string cooteroool
variable i=0
Execute "CreateBrowser prompt=\"find the folder full of slopes (y-

Waves)!\", showWaves=0, showVars=0, showStrs=0" //asks you to find
a wave, who’se path is stored as S_browserlist

SVAR S_BrowserList=S_BrowserList //sets a global variable
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variable pathlength =strlen(s_browserlist) //length, in
numbers, of the path name.

string foldername= s_browserlist[0,pathlength-2] //cuts the
semicolon from the path name

string/g path2slopes= foldername+":"
setdatafolder $(path2slopes)
string slopelist= wavelist("!*Field*",";","")
setdatafolder root:

Execute "CreateBrowser prompt=\"find the folder full of field waves (x
-Waves)!\", showWaves=0, showVars=0, showStrs=0"

SVAR S_BrowserList=S_BrowserList //sets a global variable
pathlength =strlen(s_browserlist) //length, in numbers, of the

path name.
foldername= s_browserlist[0,pathlength-2] //cuts the semicolon

from the path name
string/g path2fields= foldername+":"
setdatafolder $(path2fields)
string fieldlist = wavelist("*field*",";","")
setdatafolder root:

string firstwavename=stringfromlist(0,fieldlist)
variable NumberofSteps = numpnts($(path2fields+firstwavename))

variable idealfieldspacing
Prompt IdealFieldSpacing, "Your first field wave has "+num2str(

numberofsteps)+ " points in it, how many equally spaced steps
would you like?"

Doprompt "Select Field Spacing",idealfieldspacing

string destfolder= "root:equalizedslopes"+num2str(idealfieldspacing)
newdatafolder/o $(destfolder)
//idealfieldspacing =2500
wave firstwave=$(path2fields+firstwavename)

//user is prompted to input number of points desired for spacing, we
then use the min and max of the firstwave’s fieldwave to set the
ideal steps

Make/o/n=(idealfieldspacing) EFS //(maxfieldsteps)
EFS=wavemin(firstwave)+((wavemax(firstwave)+abs(wavemin(firstwave)))/

idealfieldspacing)*x

variable stepsize =((wavemax(firstwave)+abs(wavemin(firstwave)))
variable newstart = 0

Do
//i=39
variable j=0
j=newstart
string fieldname=stringfromlist(i,fieldlist)
string kerrname=stringfromlist(i,slopelist)
Print fieldname

if(strlen(fieldname)==0)
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break
endif

wave fieldwave = $(path2fields+fieldname)
wave KerrSlope=$(path2slopes+kerrname)

make/o/n=(numpnts(fieldwave)) Dummy=nan

string EFSSpecific= "EFS"+ "_"+num2str(
idealfieldspacing)+"points"

string ESpacedName="E_"+kerrname
duplicate/o EFS, $(espacedname)
duplicate/o EFS, $(efsspecific)
wave EqDkerr= $(espacedname)
EqDKerr=kerrslope[0]

variable pointdifference = idealfieldspacing-numpnts(
fieldwave)

//if lesss
//elseif more
//endif

//waves are :
//EFS : Equally spaced ideal field steps
//Dummy : when looking for closest point, use dummy as a filler.
//eqDkerr: when the interpolated value is found, makea new field wave

with these steps.
//fieldwave: the actual wave being investigated
//kerrslope : the wave with the kerr slopes that match up with

corresponding fieldwaves

do

if(EFS[j]<fieldwave[0])
do

j+=1

while(EFS[j]<fieldwave[0])
newstart=j
//once it finds the start point on the first one

, maybe save it so we don’t have to count
from 0 every time?

elseif(efs[j]>fieldwave[numpnts(fieldwave)-1])
//the last point of the new wave is the

last point of the slope wave
endif

dummy = fieldwave-EFS[j]
wavetransform/o abs, dummy
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variable scaleFraction=.005 //startpoint for honing in
on proper tolerance

do

findvalue/t=(scalefraction*(stepsize))/v=(
wavemin(dummy)) dummy //if we can’t
consistantly find these points, or if it is
wrong, can make a loop where the tolerace
slowly increases while checking for the point
, compare to what we know the minpoint would
be and if the index we find returns the same
value

// the closest value in EFS to the field
value is minwave(dummy) at point ’
v_value’

//Is this particular point closer to EFS
j-1 or j+1

//print wavemin(dummy)
//print dummy[v_value]

scalefraction/=2 //makes tolerance smaller every
time it gets the wrong point

while(wavemin(dummy)!=dummy[v_value])

if(v_value!=numpnts(fieldwave)-1)
variable InterpolationDifference =

fieldwave[v_value]-EFS[j]

if(interpolationDifference<0)
variable endpoint=v_value

+1
variable startpoint=

v_value
variable endbound=

fieldwave[endpoint

variable
startBound=fieldwave[
startpoint]

elseif(interpolationDifference>0)
startpoint=v_value-1
endpoint=v_value
endbound= fieldwave[

startpoint]
startBound=fieldwave[

startpoint]
endif

//variable InterpolationPercent = (fieldwave[j]-
startbound)/(endbound-startbound)
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//at this point, now we can just plug into the
formula on pg 44 of my notebook :D

variable InterpolatedSlope = (((kerrslope
[endpoint]-kerrslope[startpoint])/(
fieldwave[endpoint]-fieldwave[
startpoint]))*EFS[j])- (((kerrslope[
endpoint]-kerrslope[startpoint])/(
fieldwave[endpoint]-fieldwave[
startpoint]))*fieldwave[startpoint])+
kerrslope[startpoint]

EqDkerr[j]=interpolatedSlope

elseif(v_value>=numpnts(fieldwave)-1)

do
EqDkerr[j]=kerrslope[numpnts(

kerrslope)-1]
j+=1

while(j<numpnts(EqDkerr)-1)

endif
//print "the % that the fieldpoint is between idealpoints is "

+ num2str(interpolationpercent)

j+=1
while(j<numpnts(efs))

string pathtonewfolder=destfolder+":"+nameofwave(eqdkerr)
duplicate/o eqdkerr,$Pathtonewfolder
killwaves eqdkerr

i+=1
while(1)
end

function killwavez(ctrlname):buttonControl

string ctrlname

setdatafolder root:reducedfieldwaves
killwaves/a
setdatafolder root:reducedslopes
killwaves/a
setdatafolder root:
end

function matrixup(cooteroool) : Buttoncontrol
string cooteroool
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Execute "CreateBrowser prompt=\"find the folder full of slopes (y-
Waves)!\", showWaves=0, showVars=0, showStrs=0" //asks you to
find a wave, who’se path is stored as S_browserlist

SVAR S_BrowserList=S_BrowserList //sets a global variable
variable pathlength =strlen(s_browserlist) //length, in

numbers, of the path name.
string foldername= s_browserlist[0,pathlength-2] //cuts the

semicolon from the path name
string/g path2slopes= foldername+":"
setdatafolder $(path2slopes)
string listofslopes = wavelist("!*matrix",";","")

variable i=0

string nameofslope= stringfromlist(i,listofslopes)
wave slopewave=$nameofslope
duplicate/o slopewave,finalmatrix
Concatenate/o listofslopes, finalMatrix
Newimage/k=1 FinalMatrix
ModifyImage finalMatrix ctab= {-10.089592,10,VioletOrangeYellow,0}
ColorScale/C/N=text0/A=RT image=finalMatrix
setdatafolder root:

end

function secondDman(ctrlname):buttonControl

string ctrlname
//variable/g boxsize
nvar boxsize = root:boxsize
print boxsize
//this is it folks.
//Need to grab that Ecks Axis. it’s in root as Actual reversal Field

Values. I think im just going to put a copy in a folder to be safe
.

variable i=0
variable Row=0//use this for matrix row
variable m=0 //use this for matrix column index
variable widthR=ceil(boxsize/2)
variable widthL=ceil(boxsize/2)
wave thematrix = finalmatrix
variable edge=0
variable numberofcolumns=dimsize(thematrix,1) //number of reversals
variable Numberofrows= dimsize(thematrix,0)
wave RWave=root:ReversalFieldValues:ReversalEcksAxis //path to the

reversal spacing wave. this will be our X axis for the derivative
//make/o/n=(dimsize(finalmatrix,1)) wavename here, dimsize(name,1)

counts how many columns are in the matrix finalmatrix.
//wavename = finalmatrix[2188][p] this format will pull all of row

2188 and asssign it to wave toot
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//this should work pretty similarly to the other FirstD, which i may
just cannibalize that code, weighting and all. nomnomnom.

//Should i do 1 line at a time, or just do the whole thing, and if
need be, i can go back and switch the singluar weird stuff?

Duplicate/o thematrix, secondDmatrix
wave secondDmatrix
make/o/n=(dimsize(thematrix,1)) TheWave
wave thewave
do
i=0

Do
variable lookatme
lookatme = thematrix[row][i]

if(row==2212&&i==100)
print "WAIT"

endif
if(stringmatch(num2str(lookatme),"nan")||

stringmatch(num2str(lookatme),"NaN"))
print "sucka"
thematrix[row][i]=thematrix[row+1][i]

endif
i+=1

while(i<numberofcolumns)
row+=1
while(row<numberofrows)
row=0
i=0

Do
thewave=thematrix[Row][p]
i=0
Do
//Make/o/n=((2*Width)+1) NewFittywave //this is the wave where

the to-be-fit-by-line points will be and this will be
overwritten every interation

if(i<widthR&&i<numberofcolumns/2)
//if there are not enough points to the LEFT

of the point we are looking at, start at 0

Duplicate/o/r=[0,i+widthR] Thewave Realfittywave
Duplicate/o/r=[0,i+widthR] Rwave RealfittyField
edge=-1

elseif(i<widthR&&i>numberofcolumns/2)
//if there are not enough points to the Right of

the point that we are looking , end at the last point

Duplicate/o/r=[i-widthL, numberofcolumns-1] Thewave
Realfittywave

214



www.manaraa.com

Duplicate/o/r=[i-widthL, numberofcolumns-1] Rwave
RealfittyField

edge=1
else

edge=0
Duplicate/o/r=[i-widthL,i+widthR] Thewave Realfittywave
Duplicate/o/r=[i-widthL,i+widthR] Rwave RealfittyField

endif

wave NewFittywave= Realfittywave//Wave variable within the
code containing the to be fit potion of points

wave newfittyField = Realfittyfield //x axis

//middle point should just always be (numpnts(
realfittywave)-1)/2 since numpnts is always odd

//eg. if there are 5 points, than middle index (0 1 2 3
4) is 2, (5-1)/2=2

//first index is always 0.
variable n=0 //index for finding radii
variable Middleindex=(numpnts(realfittywave)-1)/2
Variable R

if(edge==-1) //use unweighted becasue weird
edgebehaviour

variable middley=newfittywave[0] //if we are
leftbound

variable middlex=newfittyfield[0]

elseif(edge==1)
middley=newfittywave[numpnts(realfittywave)-1]

//if we are rightbound
middlex=newfittyfield[numpnts(realfittywave)-1]

elseif(edge==0)
middley=newfittywave[middleindex] //if we are

in the middle
middlex=newfittyfield[middleindex]

endif

variable Rmin,Rmax, Stdev

Do //find the R values from each point to the middle
if(edge==-1) //suspected messy edgebehaviour

messing up integration, use no weight at edge

break
endif

//R=(((newfittywave[n]-middley)^2)+((newfittyfield[n]-middlex)
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^2))^1/2
R=((newfittyfield[n]-middlex)^2)^1/2

if(n==0)
make/o/n=(0) root:RadialDistances //have

this made somewhere nice.....
wave radialdistances = root:

radialdistances
radialdistances[0]={R}

// display RadialDistances
//doupdate

else
radialdistances[n]={R}
//doupdate

endif

n+=1

while(n<numpnts(realfittywave))

if(edge!=-1)
duplicate/o newfittywave, weights
weights=0
Rmin = wavemin(radialdistances)
Rmax=wavemax(radialdistances)
stdev=Sqrt((-(Rmax-Rmin)^2)/(2*ln(.1))) //using

the distribution of radial distances to
create a resized gaussian.

//the farthest point is assigned to the
location of the gaussian where we have
1% of the total value

n=0

do
Weights[n]=Exp((-(RadialDistances[n]-Rmin

)^2)/(2*(stdev^2)))
n+=1

while(n<numpnts(radialdistances))

Curvefit/N/Q line newfittywave /x=
newfittyfield/i=0/w=weights

else
Curvefit/N/Q line newfittywave /x=

newfittyfield
endif

wave w_coef
variable slope = w_coef[1] //variable slope for the linear fit

//wave w_coef
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secondDmatrix[row][i]=slope
i+=1

while(i<(numberofcolumns))
print "row " + num2str(row) + " complete"
row+=1

while(row<Numberofrows)

end

function setdatafolderDude(cooteroool) : Buttoncontrol
string cooteroool

Execute "CreateBrowser prompt=\"find the folder full of slopes (y-
Waves)!\", showWaves=0, showVars=0, showStrs=0" //asks you to find
a wave, who’se path is stored as S_browserlist

SVAR S_BrowserList=S_BrowserList //sets a global variable
variable pathlength =strlen(s_browserlist) //length, in

numbers, of the path name.
string foldername= s_browserlist[0,pathlength-2] //cuts the

semicolon from the path name
string/g path2slopes= foldername+":"
setdatafolder $(path2slopes)

end

function contrast(cooteroool) : Buttoncontrol
string cooteroool
//nvar contrast=root:range
string listofTraces =Imagenamelist("",";")
string TraceName = stringfromlist(0,listoftraces) //assumes only one

trace on graph
wave tracepath = imagenametowaveref("", tracename)
//wave thewave =$tracepath
variable minuscontrast =wavemin(tracepath)
variable pluscontrast=wavemax(tracepath)
ModifyImage ’’ ctab= {minuscontrast,pluscontrast,RainbowCycle,1}
print minuscontrast
print pluscontrast

end

function changeaxestest(cooteroool) : Buttoncontrol
string cooteroool
wave reversals= root:ReversalFieldValues:ReversalEcksAxis
wave appliedfield =root:EFS_2500Points
variable columns= numpnts(reversals)
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variable rows= numpnts(appliedfield)

make/o/n=(rows,columns) Hcs
make/o/n=(rows,columns) Hus
variable r=0
variable c=0
Do
r=0

do
Hcs[r][c]=(appliedfield[r]-reversals[c])/2 //h-Hr/2
Hus[r][c]=(appliedfield[r]+reversals[c])/2 //H+Hr/2
r+=1
while(r<rows)

c+=1
while(c<columns)

end
//################################################
function reducepointnumber(cooteroool) : Buttoncontrol
string cooteroool

//()Identfy waves that have matching suffixes
//() create new waves with different names
//() reduce the waves so that they have less dense data points

string path2reducedreversal
variable i=0
variable k=0
variable p=0
wave reversalfieldvalues = root:ReversalFieldValues:ReversalEcksAxis

//this is made from the sas program, and should already contain
all the revresal field values

variable rng1,rng2,rng3,multiplier
string ReducedFoldername

Prompt ReducedFoldername, "What do you want the folder name suffix to
be for the reduced Waves"

DoPrompt "Reduced Folder Name", ReducedFoldername

Prompt Multiplier, "what multiple of the rebersal number do you want
as the largest point number?"

DoPrompt "input Fraction",multiplier

curvefit/q line, reversalfieldvalues //produces a ...Hopefully, linear
fit.

wave w_coef
variable Spacing = W_coef[1]/multiplier //w_coef[1] is the slope of

the fit line
make/o/n=1 IdealSteps

Execute "CreateBrowser prompt=\"Find the folder with the Post-
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NormReversals\", showWaves=1, showVars=0, showStrs=0" //asks you
to find a wave, who’se path is stored as S_browserlist

SVAR S_BrowserList=S_BrowserList //assigning the location of the
global variable

variable pathlength =strlen(s_browserlist) //length, in numbers, of
the path name.

string FieldLocation= s_browserlist[0,pathlength-2] //cuts
thesemicolon from the path name

do
variable onestep=reversalfieldvalues[0]+i*Spacing
Idealsteps[i]={onestep}
i+=1

while(i<numpnts(reversalfieldvalues)*multiplier)

path2reducedreversal="root:Normalized_"+num2str(i)+"steps"+
reducedfoldername

if(datafolderexists(path2reducedreversal)==0)
newdatafolder $(Path2reducedreversal)

endif

setdatafolder $(fieldlocation)
string listofFields=wavelist("*Field*",";","")
string listofKerr=wavelist("*N_*",";","")
setdatafolder root:

Do
if(p==0)

//Identify prefix. sometimes it will be S_N_" " and
sometimes it will just be N_ so we should have this
figure out

//which it is.

if(stringmatch(stringfromlist(0,ListofKerr),"*Full*")
==1)

String Prefix = Stringfromlist(1,Listofkerr)
else

Prefix = Stringfromlist(0,Listofkerr)
endif

Variable PrefixLocation= strsearch(prefix,"R_",1)
Prefix=prefix[0,Prefixlocation+1]
Print Prefix

endif
if(stringmatch("*FULL*",stringfromlist(p,listoffields))==1)

p+=1
endif
string reducedfieldname="Reduced"+Stringfromlist(p,

listoffields)
Make/n=0/o $(reducedfieldname)
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wave reducedwave=$(reducedfieldname)
string fieldname = stringfromlist(p,listoffields)

if (strlen(stringfromlist(p,listofFields))==0)
break

endif

wave Fieldwave = $(fieldlocation+":"+fieldname)

variable startofR= strsearch(fieldname,"R_",1)
string searchstring= fieldname[startofR+2,strlen(fieldname)-1]

//identifies the numerical suffix (index) of the wave

variable theindex=whichlistitem(Prefix+searchstring,listofkerr
)

string kerrname=Prefix+searchstring
Wave Kerrwave=$(fieldlocation+":"+kerrname)
string reducedkerrname="Reduced"+Stringfromlist(theindex,

listofkerr)
Make/n=0/o $(reducedKerrname)
wave reducedKerr=$(reducedKerrname)
k=0

Do

if(k==0)
variable localmin= wavemin(fieldwave)
duplicate/o idealsteps, IdealstepMovingMin
wave IdealstepmovingMin
IdealstepmovingMin=idealsteps-localmin
wavetransform/o abs idealstepmovingMin
variable IdealMin=wavemin(idealstepmovingmin)
Findvalue/V=(idealmin) idealstepmovingmin
variable StartingINdex=v_value

endif

Duplicate/o fieldwave, Minfinder
wave Minfinder
Minfinder= Fieldwave-idealsteps[k+StartingIndex]
wavetransform/o abs minfinder
variable Minvalue= wavemin(minfinder)
findvalue/v=(minvalue) minfinder
reducedwave[k]={fieldwave[v_value]}
reducedkerr[k]={kerrwave[v_value]}
//Now i need to go to use these idnex values

found to pull the same indexed values from
the kerr wave

k+=1
while(StartingINdex+k< numpnts(idealsteps))
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if(p==0)
Display ReducedKerr vs ReducedWave

else
rng1=Abs(floor(enoise(65534)))
rng2=Abs(floor(enoise(65534)))
rng3=Abs(floor(enoise(65534)))
appendtograph/c=(rng1,rng2,rng3) ReducedKerr vs

Reducedwave
doupdate

endif
p+=1

While(1)
wave reduced
killwaves minfinder,Reduced, IdealstepMovingMin
end
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